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ABSTRACT 

A common theme among the many existing multivariate statistical process 

monitoring (MSPM) methods is the recommendation that process knowledge be used to 

select a suitable monitoring procedure. Several methods possess the property of 

directional invariance, with shift detection performance depending only on the distance of 

a shift away from the target mean vector. This property is of special importance when 

characterizing a new process, or when available process knowledge suggests that shifts 

may occur in virtually any direction away from the target mean. In other cases, it is 

possible and may be desirable to increase a control scheme's sensitivity by using 

knowledge of the process structure and possible upset mechanisms to "aim" the control 

procedure. This research identifies a potentially common MSPM scenario and extends 

the idea of using process knowledge to determine an appropriate control statistic for 

assignable cause detection and identification. 

Additionally, assumptions of normality and constant variance are imbedded in 

many statistical process monitoring procedures. For scenarios where monitoring with 

regression adjusted variables seems appropriate, but assumptions of normality and 

constant variance are violated, the use of prediction limits based on Generalized Linear 

Models theory was investigated and shown to be a potential improvement. 

Finally, large capacity equipment may have several zones, making uniformity 

across zones an important objective. Furthermore, product delivery schedules may 

prevent machines from being dedicated to a single product specification, which adds 

in 
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another source of variability to observed measurements. The use of regression 

adjustment with the addition of covariates to account for product specifications was 

investigated. For the three zone process investigated, shifts in one or two zones were 

shown to provide strong signals in the residuals. Furthermore, the residuals formed in 

this fashion were shown to provide a strong indication of uniformity dispersion effects 

across product specification levels. 
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CHAPTER 1 

INTRODUCTION 

Motivation for Multivariate Statistical Process Monitoring 

There are many situations where it is important to simultaneously control many 

related quality characteristics (variables). These include (but are not limited to) examples 

of: inner and outer bearing diameter (Montgomery, 1991) where both determine the 

usefulness of the part; the cascade processes mentioned by Hawkins (1993) where the 

state of the jl process step may effect the steps that come after; and the multiple stream 

processes mentioned by Mortell & Runger (1995) where the output of a filling head may 

be affected by causes specific to that head (clogging or wear) or by causes common to all 

heads on a machine (pressure or fluid viscosity changes). 

Jackson (1985) provides a useful categorization of issues that differentiate 

multivariate techniques from independently using "classical" univariate techniques on 

each variable: 

1) They will produce a single answer to the question: "Is the process in 
control?"; 2) The specified type I error will be maintained; and 3) These 
techniques will take into account the relationship between these two [or 
more] variables. 

The point made in 1) primarily refers to the avoidance of effort involved in maintaining 

many control charts simultaneously. The point in 2) refers to a typical problem involved 

in simultaneous inference — if we have two control procedures, each with Type I error 

probability a = .05, this level is not maintained for a simultaneous inference about the 

state of both. Montgomery (1991) gives the Type I error for the joint control procedure as 



a' = l-(l-a)p where p = the number of independent quality characteristics. He also states 

that if the p quality characteristics are not independent, then there is no way to measure 

the distortion of the joint procedure. This distortion also translates as shorter in-control 

average run lengths (higher false alarms). Table 1-1 shows Runger's (1996a) example of 

the significance of this distortion in typical Shewhart control charts using 3-sigma limits 

run simultaneously. Multivariate techniques are designed to avoid this distortion. 

Perhaps the strongest benefit of multivariate methods lies in 3), the ability to 

exploit relationships between variables. While the problem with simultaneous univariate 

methods in 2) results in degradation of performance, it is possible that ignoring 

relationships between variables will miss unusual process states altogether. Figure 1-1 

(Runger, 1996a) demonstrates the case of two univariate charts showing both variables 

are within control limits. Figure 1-2 (Runger, 1996a) uses the same data considered 

jointly to demonstrate that one data record is violating the usual relationship between the 

two variables and should be investigated. 

Up to this point, only advantages of multivariate methods have been stated to 

motivate their study. Hawkins (1991, 1993) points out that in spite of their statistical 

power many multivariate techniques do not indicate the cause of a signal. This is a 

Table 1-1. Average Run Length of p simultaneous 3-sigma 
Shewhart charts (Runger, 1996) 

Number of Variables [p] 
Data Records Between 

False Alarms 
1 370 

20 20 
200 2 
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Figure 1-1. Individual control charts for Yi and Y2. (Runger, 1996a) 



2 - O yr 

>- 
0 - 

o 
O     yS /o 

o 

-1 - 

o 
o o 

V 
I 

-1 
I 
0 :   \ i 

Y1 Unusual Point 

Figure 1-2. Joint plot of Y2 vs. Yj. (Runger, 1996a) 

by-product of reducing the dimensionality of the problem to single (or a few) indicators. 

This aspect of finding the problem must also be considered. 

While relationships (correlations) between variables are advantageous for 

multivariate control schemes, autocorrelation within variables can hurt statistical process 

control schemes (Montgomery and Mastrangelo, 1991; Harris and Ross, 1991), causing a 

dramatic increase in false alarms. Sensitivity to autocorrelation is another important 

factor for consideration. 

In summary, it is desirable to condense information so that the process is more 

easily monitored; retain enough information so that assignable cause may be determined 

when the control scheme does signal; achieve a suitable balance between high in-control 

average run lengths (low false alarm rate) and fast detection of real shifts in some variable 

or combination of variables; maintain specified Type I error levels; be sensitive to shifts 



in all directions (unless process knowledge suggests structured shifts); and be relatively 

insensitive to autocorrelation. This is a tall order, with several of the objectives in 

conflict; however, these desirable properties serve as useful evaluation criteria for 

contrasting performance of proposed methods. 

Importance of the Study 

While Hotelling's (1947) bombsight data analysis is often attributed as the first 

work in the multivariate quality control area, it is not an "old" field by any means. 

Handling more than just a few variables is computationally intensive, and interest in 

multivariate quality control techniques waned until the 1980's when the availability of 

computers and a renewed interest in quality became more widespread [of 37 papers 

referenced by the Lowry and Montgomery (1995) survey paper, only three are prior to 

1984]. Both the need and opportunity for original contribution in this field are high. 

An emerging theme among several of the existing multivariate statistical process 

monitoring (MSPM) methods is the recommendation that process knowledge should be 

used to select a suitable monitoring procedure. The first consideration involves 

considering any unique structure in the process itself. For example, Mortell and 

Runger (1995) propose a model and control strategies for multiple stream processes to 

detect shifts in the mean of all streams vs. a shift in a single stream of a multi-head filling 

machine. Hawkins (1993) modified his original regression adjustment approach to be 

more suitable for monitoring cascade (sequential value added) processes. 



Other considerations involve expectations concerning the nature of a potential 

process upset: 1) whether a shift is likely to occur in one, several, or all of the quality 

characteristics being monitored; 2) whether the relationships between quality 

characteristics are maintained under shift conditions (model-fixed) or changed (model- 

void) (Runger, 1996b); and 3) whether a shift is likely to occur in any direction within the 

region of interest or towards a known out-of-control state (Healy, 1987). The possible 

combinations of these factors mounts quickly, and no single monitoring method emerges 

as an overall superior approach. 

Research Objectives / Organization 

A literature review is the necessary first step in determining research 

opportunities, assessing their importance, and becoming "schooled" in domain-specific 

knowledge and terminology. While the focus in the Chapter 2 literature review is to 

emphasize material related to specific research objectives mentioned below, additional 

material uncovered in the course of this review is also presented to provide an interested 

reader with additional references in the multivariate process monitoring arena. 

In processes where model-void shifts are expected, regression adjustment 

techniques proposed by Mandel (1969) and Hawkins (1991, 1993) have shown promise in 

improved sensitivity and diagnosis of assignable cause. These methods rely on the use of 

process knowledge and the specific process structure. Necessarily limiting assumptions 

are required in their formulation. An objective of this research is to remove some of 

these limitations. Chapter 3 identifies a potentially common multivariate process 



monitoring scenario and extends the idea of using process knowledge to determine an 

appropriate control statistic for assignable cause detection and identification. The result 

is a generalized regression adjustment procedure applicable to a wider class of sequential- 

value-added (cascade) processes. 

Regression adjustment techniques based on least-squares estimators depend on the 

assumption that the quality characteristics of interest are normally distributed. 

Furthermore, other methods (T , MCUSUM, MEWMA) either depend on p-variate 

normality assumptions or, as a minimum, have used normally distributed variates in 

calcualtions/simulations of shift detection performance as measured by the Average Run 

Length (ARL). An objective of this research is to create a method for handling non- 

normal data in situations that otherwise seem well-suited to regression adjustment 

procedures. Chapter 4 describes a semiconductor process where one variable (thickness) 

is controlled directly by the process and is normally distributed; and a second variable, 

resistivity, is usually a function of thickness but follows a skewed distribution and may be 

moved in a "model-void" fashion from its target by causes unrelated to thickness, such as 

contamination. The use of Generalized Linear Models to appropriately fit the relationship 

between thickness and resistivity in spite of the latter's non-normality and non-constant 

variance is explored. 

In some manufacturing processes, large capacity equipment may have several 

zones, with slight differences between zones adding an additional source of variability. 

An important objective is ensuring that uniformity between zones is maintained to the 



highest possible extent. Furthermore, due to product delivery schedules, it may not be 

feasible to dedicate a single machine to a particular product formulation. Process 

attributes may need to be adjusted from run to run to meet target product specifications. 

Chapter 5 explores monitoring uniformity with regression adjusted variables, with 

modification to the regression models to adjust for varying product specification. 

Finally, Chapter 6 summarizes the research findings, and presents ideas that may 

lead to additional inquiry in the multivariate statistical process monitoring field. 



CHAPTER 2 

LITERATURE REVIEW 

Multivariate control methods proposed to date may be classified into three broad 

• • • 9 categories:  1) Multivariate extensions of "classical" univariate SPC methods — T , 

MCUSUM, MEWMA, Regression Adjustment, etc.; 2) Adaptations of multivariate 

analysis techniques to the quality control application ~ Principal Components, Partial 

Least Squares, Discriminant Analysis, etc.; and 3) Other —Graphical Techniques, Neural 

Nets, Pattern Recognition, etc. After current methods are reviewed, a section 

emphasizing the differences between and the impacts of cross-correlation and 

autocorrelation is presented in order to further distinguish between them since cross- 

correlation is not considered in univariate SPC. 

Adaptations of "Classical" Univariate Methods 

Hotelling's T2 

In 1931, Harold Hotelling published "The Generalization of Student's Ratio," for 

the testing of hypotheses about the location of the means of multivariate distributions 

(Hotelling, 1947). Jackson (1959), restated Hotelling's method in the matrix form that is 

more commonly used today. The following summary is from Lowry and Montgomery 

(1995). Assuming that p quality characteristics are jointly distributed as p-variate normal 

and that random samples of size n are collected, Hotelling's chart signals a statistically 

significant shift in the mean when 

X? =(X,-|^o)'5:"1(Xi-|^o)>h1 (2-1) 
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where hi is the selected control limit. This procedure is considered a natural multivariate 

extension of the univariate Shewhart chart. Most often, X and |io are unknown and must 

be estimated by X and S using historical data {when these are substituted into (2-1), the 

resulting expression is often referred to as Hotelling's T2}. When \i and Z are known [or 

estimated from a relatively large number of preliminary samples] the upper control limit 

for the x2 chart [T2] is often set to UCL = x„,p • When this is not the case, Hotelling 

showed that T is related to the F-distribution by 

T2     =P(n-1)F (2-2) p,n,a p,n-p,a V / n-p 

The average run length (ARL) properties of the %2 chart depend only on the distance of 

the shift from the target mean vector, |LXo- This distance is given by 

K = VO-l-O'^'O-Mo) (2-3) 

Under shift conditions, the %2 statistic follows the non-central chi-square distribution with 

the non-centrality parameter equal to X^2. Lowry and Montgomery (1995) and Wierda 

(1994) give additional guidance for adjustments to the sample statistic and reference 

distribution depending on the control phase (Phase I - retrospective test for control 

initiation versus Phase II - continued monitoring) and the sample size (a single 

observation on each characteristic, or the sample mean of several observations on each 

characteristic). 
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Hawkins (1991) mentions that "although the T2 is the optimal single-test statistic 

for a general multivariate shift in the mean vector, it is not optimal for more structured 

mean shifts - for example shifts in only some of the variables." Structured shifts are 

common, and this motivated Hawkins development of regression adjustment techniques 

described later. Since the T combines all the information into a single statistic, it does 

not give insight into the cause(s) of the indicated shift. A common approach has been to 

retain all individual charts for diagnosis. This approach has its own set of shortcomings 

and will be discussed in the "graphical techniques" section. 

Lowry and Montgomery (1995) point out that because the Hotelling T2 is based 

on only the most recent observation, it is insensitive to small and moderate shifts in the 

mean vector. Multivariate CUSUMs and EWMAs contain information on previous 

periods and are more sensitive to small shifts. 

Multivariate Cumulative Sum (MCUSUM) 

Several authors propose multivariate CUSUM procedures. Woodall and 

Ncube (1985) consider the use of several univariate CUSUM procedures to be a single 

multivariate CUSUM procedure. The focus of their paper is on an analytical technique 

for computing the Average Run Length of such an approach (with the run length 

determined by the first chart to signal) under assumptions of independence between 

variables. For dependence in the original variables, they recommend transformation to 

principal component analysis to obtain independent components (see the section on 

"Adaptations of Multivariate Analysis to Quality Control" for a description of Principal 
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Components Analysis). For p = 2, the use of independent CUSUMs on the principal 

components is shown to detect small shifts more quickly than the T chart. Assuming the 

original variables are correlated, the approach based on principal components analysis 

would pick up "relationship" shifts that the approach on original variables would miss. 

From an interpretability perspective, several authors [Lowry and Montgomery, 

(1995); Hawkins, (1991) to name a few] point out that principal components may not 

always have an interpretable meaning with respect to the process (especially as p gets 

large). While the approach on original variables would be easy to interpret when 

variables are outside individual control limits, this approach would miss changes in 

relationships between variables that occurred inside the control limits on each variable. 

Woodall and Ncube dismiss this problem saying "in many cases a shift in correlation 

coefficient has no adverse effect on quality and does not require any corrective action to 

be taken." Pignatiello and Runger (1990) note that it may not be possible to provide 

corrective action on a single variable without affecting one or more of the other variables, 

and offer the opposing viewpoint that relationships between all variables must be 

considered to properly interpret a signal and determine corrective action. 

To summarize Woodall and Ncube from an "interpretability" standpoint, shifts 

that are outside univariate control limits would be clearly seen. Changes in relationships 

within individual univariate control limits would be missed. Using principal components 

in the separate CUSUMs would allow detection of relationship changes within individual 

univariate control limits, but may complicate determination of assignable cause. 
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Healy's (1987) conversion from a Multivariate CUSUM to a univariate CUSUM 

(when a shift is expected in only one direction defined by UB) is very useful in that it 

allows existing univariate CUSUM theory to be used in selecting the control limit, H, and 

the initial CUSUM value, So [important for fast initial response properties], to achieve 

desired Average Run Length (ARL) properties. Healy's CUSUM for detecting a shift in 

the multivariate normal mean is 

Sn = max (Sn-i + a' (x„ - uo) - .5D, 0) > H (2-4) 

where 

a' = (UB - HG)' 2"1 / [(UB - no)' S'VB - UG)]
1/2 (2-5) 

and 

D = [(HB-MG)'Z"W^G)]
1/2 (2-6) 

where "D" is the "noncentrality parameter." D measures the shift in the multivariate 

mean in terms of a statistical distance (if the variables are uncorrelated, D becomes a 

"standardized" Euclidean distance). Healy showed that the ability of this procedure to 

discriminate between (J.G and |O,B depends on fie , M-B and E only through D ~ it does not 

depend on the number of variables, p. He states the reason is that this procedure only 

looks at one particular direction. It should be clear that the shift doesn't have to be only 

in one variable — the shift is in a multivariate mean from fie to fiß with distance D. 

Healy's procedure requires an estimate of the mean in the "bad" state — in his 

example, product knowledge suggested this value directly. When this is not known, he 
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suggests using Crosier's MCUSUM (referencing an unpublished 1986 paper which 

became part of Crosier's 1988 Technometrics paper described below). 

Healy stated "My procedure makes sense when shifts in only a few known 

directions are to be expected." If shifts in other directions are likely, Healy recommends 

adding CUSUMs of linear combinations that are orthogonal. If particular process "failure 

modes" continually lead to a similar upset, then implementing this procedure makes a lot 

of sense. However, as the number of process steps involved increases it seems reasonable 

that the potential for several different failure modes is also increased, with interaction 

between them influencing the size of any particular upset. 

Healy suggests adding another one-sided CUSUM to form an ordinary two-sided 

CUSUM procedure where the elements of u^ for the second CUSUM are based on the 

size of the undesirable shift in the opposite direction as before. For shifts in other 

directions, additional CUSUMs are added in such a manner that the linear combinations 

in a' x are orthogonal. For p = 2, this would amount to four individual CUSUMs, with 

the number rising to eight for p=3 ~ herein lies an important disadvantage. Maintaining 

this many separate CUSUMs raises the false alarm rate of the overall procedure, unless 

each CUSUM is "de-sensitized" so that the overall Type I error rate is maintained. 

Changing the control limit to reduce false alarms hinders shift detection performance. 

From an interpretation viewpoint, a signal in Healy's approach would indicate a 

shift similar in structure to that specified for |0.B.    "Similar" because a large enough shift 

in directions at some angle (less than "orthogonal") to u^ could also cause a signal. If 
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additional CUSUMs are added such that a' x are orthogonal, and you cannot add any 

others that would be orthogonal, then a signal would be narrowed down "directionally," 

but there are many ways for different sizes and combinations of shifts to cause the signal. 

Conceptually, univariate control charts within limits with a CUSUM on the linear 

combination signaling may indicate a relationship change; however, since Healy's 

approach determined the linear combinations by specification of u^ rather than on 

historical data, this reasoning may not hold. 

Crosier (1988) considers two approaches to multivariate CUSUMs. The first is 

referred to as COT (the CUSUM of the scalars Tn, which are the positive square roots of 

the familiar T statistic). This CUSUM is given by: 

Sn=max(0,S(n_1)+Tn-k) (2-7) 

This scheme signals when Sn > h. 

The second form is created by replacing scalar quantities of a univariate scheme 

with the vectors such that: 

sn = max (0, sn-i + (xn - a) - k) (2-8) 

where a contains the target mean for each variable. Crosier notes problems associated 

with selecting k and how to interpret taking a maximum of a vector and a null vector, k 

needs to be determined so that it "shrinks" sn-i + (xn - a) towards zero. Crosier 

determined a suitable k is: 

k = (k/Cn)(sn.,+xn-a) (2-9) 

where Cn is the length of (sn-i + xn - a ) given by: 
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Cn = [(Sn-i + xn - a)' rVi + *n - a)]1/2 (2-10) 

To interpret picking the maximum of a vector with respect to a null vector Crosier 

defined: 

sn=0 ifCn<k 
(2-11) 

sn = (sn.i+x„-a)(l-k/C„) ifCn>k 

The multivariate control scheme signals when Yn > h, where: 

Yn^Sn'Z-'sn]172 (2-12) 

Crosier's paper focused on ARL performance comparisons rather than signal 

interpretation. Regarding interpretation, Crosier states "the CUSUM vector of a 

multivariate CUSUM scheme could be examined to determine the nature of the process 

problem." Yn is excluded from interpretation as it is a scalar composite indicator that 

cannot assign cause. Observing each of the elements of sn will only help when variables 

are outside of their univariate control limits. A signal caused by a change in the 

relationship between variables (with each variable remaining within its own limits) would 

not show in the univariate components of sn, and could be interpreted as a false alarm. 

The interpretation problem for COT is even more difficult. It is a CUSUM based 

on the positive square root of T , which is itself a composite indicator. Furthermore, 

Hawkins (1991) states "Measures based on quadratic forms (like T2) also confound mean 

shifts with variance shifts and require quite extensive analysis following a signal to 

determine the nature of the shift." A T decomposition approach proposed by Mason, 

Tracy and Young (1995) does quite well at interpreting the troublesome variables, but 
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information relative to location versus variability shifts is not highlighted in their 

procedure. An improved algorithm requiring fewer computations is in press (Mason et. 

al, 1997). For cascade processes, downstream variables are also affected by causes at an 

upstream change. Since the downstream means also change, diagnostic methods based 

on T decompositions are likely to assign cause in more places than it originated. 

Pignatiello and Runger also consider two formulations for multivariate CUSUMs. 

The first is based on accumulating differences between the sample average and the target 

value for the mean, then applying a quadratic distance measure; whereas the second 

method calculates a quadratic distance for each X, then accumulates the quadratic form. 

The first method is called MCI which takes the form: 

MClt = max{||Ct||-knt, 0} (2-13) 

where 

nt = nt.i + l           ifMClt-i>0 

= 1                  if otherwise, 
(2-14) 

Ct|| = (Ct'E-1Ct)
1/2, (2-15) 

dQ=   V   (Xi-no). (2-16) 
i=t — n, +1 

Though formulated differently, the ARL performance of MCI is similar to Crosier's Y„. 

The second method is referred to as MC2 and takes the form: 

MC2t = max {0, MC2t-i + D? - k} (2-17) 

where 



Df =(X,- ^o)'2''(Xt- jio). (2-18) 

Pignatiello and Runger noted that MC2 has ARL performance similar to Crosier's COT, 

even though Crosier's formulation involves the positive square root of T2 (note: D2 and 

T are essentially the same quantity). 

From an interpretability standpoint, MC2 suffers from the same difficulty as 

COT - they are based on composite indicators that do not directly tell us anything about 

the individual variables. As previously mentioned, these measures also confound 

location and variability shifts. 

Pignatiello and Runger recommend MCI due to its better ARL performance. 

After an illuminating discussion on the need for considering relationships between 

variables in interpreting shifts and deciding upon corrective action, the suggestion for 

interpretation is supplementing the MCI chart (for monitoring) with multiple univariate 

control charts (for interpretation). As previously discussed, univariate charts will not 

indicate relationship changes that can occur while observations remain within univariate 

control limits. 

The potential problem of CUSUM inertia is described along with that of 

MEWMAs below. 

Multivariate Exponentially-Weighted Moving Average (MEWMA) 

Lowry et al. (1992) propose a multivariate extension of the univariate EWMA. 

The MEWMA consists of vectors of EWMAs: 

Z^RX.+tl-R^,., (2-19) 
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where Z0 = 0 and R = diag (ri, xi, ...,rp) [smoothing constants], 0 < rj < 1 (rj are generally 

set to be equal), j = 1, 2,..., p. These vectors are used to form T statistics in the form: 

T,
2
=Z;E-;Z, (2-20) 

These statistics are compared to tabular reference values selected to achieve desired ARL 

properties. A useful result is that when the MEWMA chart signals, the Zi vectors give 

some indication of the direction. Lowry et al. show that MEWMA ARLs are better than 

the Hotelling T and MCUSUM in detecting an initial out of control condition, and are as 

good as MCUSUM methods when the process is initially in-control but shifts later. 

Both the MEWMA and the MCUSUM suffer from inertia -- if the process was 

operating near one control limit, then began a shift towards the other, these procedures 

would be slow to react. This occurs because the statistics include weighted information 

on prior periods. Lowry et al. recommend a Hotelling T2 be used concurrently to protect 

against inertia. 

With the exception of Healy's (1987) method, the procedures mentioned thus far 

have the important property of directional invariance; that is, the average run length 

(ARL) to detect a shift depends only on the distance of the shift from the multivariate 

mean (this is true for the MEWMA only as long as the weights used in each univariate 

EWMA are equal). This directional invariance property is of special importance when 

characterizing a new process, or when available process knowledge suggests that shifts 

may occur in virtually any direction away from the target mean. In other cases, it is 

possible and may be desirable to increase a control scheme's sensitivity by using 
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knowledge of possible upset mechanisms to "aim" or sensitize the control procedure. 

Intuitively speaking, why expend resources monitoring regions towards which the process 

mean is unlikely to shift? Several techniques are available that use process knowledge to 

sensitize shift detection and/or improve diagnosing assignable cause. 

Regression Control Charts 

Mandel (1969) introduced the idea of a regression control chart to adjust the 

quality characteristic of interest (post office man-hours expended) to account for an 

outside covariate (mail volume) - parallel control limits were based on a constant times 

residual mean squared error (versus using the regression confidence limits). In this 

scenario, the man-hours mean is variable, and it is only important to identify offices or 

changes at a specific office that violate the "usual" relationship between man-hours and 

mail volume ~ "model fixed" changes in mean man-hours were expected and not 

considered important by management. Note that the property of directional invariance for 

the control mechanism is deliberately eliminated. 

Hawkins (1991) synthesized Mandel's regression adjustment, with Healy's (1987) 

approach for maximizing sensitivity to a structured shift, using the additional assumption 

that a shift would occur in only a single variable. The procedure involves a control 

statistic for each variable that is the "residual when Xj is regressed on all other 

components of X rescaled to unit variance:" 

Z. = 

(Xi-lO-XßyCXj-Jlj) 
J*l (2-21) 
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where TU is the variance of the residuals given by 

^^»-Eß«0« (2-22) 
j*< 

and ay is the i,j 1 element of the initial variance-covariance matrix, Do- The Zj are used to 

detect location shifts in the ith variable. 

Hawkins showed an important relationship between T2, X and Z is: 

T2=£   Wi,   where Wi = (Xi-^i)ZiTli-
1/2 (2-23) 

i=l 

Hawkins recommends basing control charts for variability shifts on Wj, noting that they 

represent the scaled product of the deviation of variable i on the X scale and its deviation 

on the Z scale. 

CUSUM control for location on each Zj (and Wj) may be performed individually 

or as a group. For individual charts: 

Lt,=max(0,L;jn_1+Zni-k) 

(2-24) 
L:n=min(0,L.   1+Zm+k) 

Sr =min(0,sr,11_1+Wlli-k) 

(2-25) 
S:=min(0,S:il_1+Wlli+k) 

It should be clear that a control chart on Zj is not a univariate chart on variable i: 

Each Zj is a linear combination of all of the measures of X, in general all 
with non-zero coefficients. This means that a shift in any component of X 
can lead to a displacement in all of the components of Z (Hawkins, 1993). 



22 

{note: the above quote applies to non-cascade process — for cascade processes he 

recommends using Yj, which is defined as a linear combination of Xi through Xj.i.} 

For group control Hawkins proposes: 

MCZ = max{max(L+
ni - Um)} (2-26) 

and 

ZNO = X(L;i+L;i)
2 (2-27) 

i = l 

(note: group control can be performed on S+ and S" charts as well). Hawkins procedures 

had the best average ranking in ARL performance of the methods considered in his paper, 

with ZNO being the best (methods compared included Woodall and Ncube's multiple 

univariate scheme, and both of Crosier's approaches {roughly equivalent in performance 

to Pignatiello and Runger's approaches}). Situations that degraded Z-based ARL 

performance were: shifts in the same direction for pairs of highly correlated variables, 

and shifts proportional to the two leading principal components. Hawkins' procedures 

ranked near the last in only five of the 30 cases examined. MCZ ranked first five times, 

and ZNO ranked first 15 times. 

In a fashion similar to that recommended by Pignatiello and Runger, Hawkins 

suggests using ZNO for monitoring, and the individual Z\ for interpretation. Relying on 

Zj for interpretation does not sacrifice relationship information since they are linear 

combinations of the Xj. Hawkins shows that a shift of 8 in the mean of Xj will result in a 

9     1/7 9 shift of 8(1- Rj )"    in the Zj (where Rj is the multiple correlation between Xj and all 
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other components of X). As the correlation increases, the shift in Xj is magnified in the 

Z,. 

From an interpretability viewpoint Hawkins states "the vector Z also has the 

valuable interpretive property that signals given are for shifts in the mean, or shifts in the 

variance, of particular variables rather than global signals indicating some unspecified 

departure from control" {note: the indications for variance shifts actually come from 

W}. This was demonstrated in an example for five variables, where a variance shift was 

induced for variable 1, and a location shift was introduced into variable 5. Charts for Zj 

and Wj associated with variables 2 - 4 remained within control limits, while charts Wi 

and Z5 correctly signaled. 

Hawkins (1993) modified his technique for application in sequential-added-value 

(cascade) processes by using only "upstream" observations as the independent variables 

in the regression adjustment. 

In contrast to Hawkins' use of simultaneous univariate CUSUMs, Timm (1996) 

applies "stepdown" finite intersection tests (FIT) to the same regression adjusted 

variables. Timm reparameterizes the hypotheses that all means are equal to their target 

value into the hypothesis: 

H = nH* where H*:^^ (2-28) 
i=l 
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and r|i+1 = (ii+i - ßjLXi. It's easy to see that r|j+i is the residual obtain by subtracting the 

predicted value of a mean (based on the observed means from previous steps) from it's 

observed value at the current step. The test statistic for testing (2-28) is: 

v      (^li -i1oi)2(n-i) (2-29) 

where d;sf is the estimated variance of f|( . The hypothesis in (2-28) is rejected if 

p 

F; > fia,i,n-i, where a is chosen so that Y[ Pr(F, ^ fia,i,„-i |H) = 1 - a . For cascade process, 
i = l 

an a priori order exists and the step-down Fit is performed one time. Otherwise, when an 

a priori order is unknown, step down FITs are performed on all possible orderings and 

type I error for each FIT must be set to control the familywise error rate. For a cascade 

process, cause is assigned to the step that first rejects an Hj. Without a known a priori 

order, all orderings would need to be completed. Timm states this procedure is optimal 

when an a priori order is known. 

Zhang's (1984, 1985) cause selecting control charts incorporate a two-step 

approach that monitors incoming quality and also monitors outgoing quality adjusted for 

the incoming quality. The adjustment may be made by theoretical or empirical models. 

The combinations of possible signals in each chart help to diagnose whether incoming, 

outgoing, or both measures contain assignable cause. Wade & Woodall (1993) showed 

that using regression prediction limits instead of confidence limits provided more 

predictable ARL performance in this procedure. 
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Adaptations of Multivariate Analysis to Quality Control 

Principal Components Analysis (PCA) 

Principal components (Hotelling, 1933) decomposes data into orthogonal linear 

combinations based on the eigenvectors of the ordered (greatest to least) eigenvalues that 

describe the present variability in the data. The eigenvalues of the covariance matrix are 

obtained by solving the "characteristic" equation (Jackson, 1980): 

| S- XI | = 0 (2-30) 

Eigenvectors associated with each eigenvalue are obtained by solving the equations: 

[S - Xi I]tj = 0 

u, = t,/(ti
lt1)'

/2 

(2-31) 

Many software packages contain eigen-analysis routines, making the calculations of 

principal components from the covariance matrix very straightforward. The number of 

principal components available is equal to the number of variables. Monitoring methods 

based on a full set of principal components retain the properly of directional invariance. 

Jackson (1980) notes that most process variability is often captured in the first few 

principal components, and that the task of monitoring a large number of variables can be 

reduced into monitoring a few principal components. PCA has the advantage of attaining 

independence between variables and reducing dimensionality, but sometimes these 

components don't have an interpretable meaning (Lowry and Montgomery, 1995). 

Scranton et. al. (1996) showed the improvement in ARL performance that can be 

obtained by using an MEWMA on a subset of principal components. 
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Partial Least Squares (PLS) 

Partial Least Squares regression (sometimes called projection to latent structures) 

was developed in the late sixties by H. Wold for use in econometrics, and was initially 

applied to chemical engineering by Kowalski, Gerlach and H. Wold, with further 

development by S. Wold and Martens (Geladi and Kowalski, 1986). The method creates 

linear combinations of explanatory variables (X) that are predictive of an external data set 

containing other variables of interest (Y). An iterative estimation technique essentially 

reconciles (by increasing correlation between) factor loadings that independently explain 

the most variability in the separate coordinate systems (Stahle and S. Wold, 1988). The 

results are models (Garthwaite, 1994): 

Yk = ßk0+ ßkiTi + ...+ ßkpTp (2-32) 

where the components Ti,..., Tp are linear combinations of the X variables. The same 

components occur in the model for each Y variable, only the regression coefficients are 

different for each Y. PLS is very similar to PCA, but the plane in X is "tilted" to be more 

predictive of the variables in Y — while the variability in X is considered (and may be 

used to identify outliers prior to prediction) it no longer dominates factor scores. If a 

variable does not exhibit as much variability but is highly predictive of Y, it may receive 

a stronger loading. Additional detail on the concept, estimation algorithmn, and 

comparisons to other multivariate analysis methods may be found in Stahle and S. Wold 

(1988), Garthwaite (1994), Kresta, et. al. (1991), and Geladi and Kowalski (1986). 
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Garthwaite's (1994) simulation study suggests PLS is most useful when the number of 

explanatory variables and the error variance are large. 

This method provides an advantage of monitoring a reduced number of 

components, but diagnosis of assignable cause may be complicated as a signal is caused 

by a high "score" in a linear combination containing factor loadings that are themselves 

linear combinations of other factors. 

Discriminant Analysis 

Murphy (1987) proposes using Hotelling's T2, and recommends applying 

discriminant analysis after an "out of control" signal to determine a subset pi of the 

original p variables that are suspected of causing the signal. Given that a vector of 

observations (x*) signals out of control [T2(x*)>K], x* is partitioned into 

(x*(1),x*(2)) where x*(1) is the pi subset of the p variables which are suspected of causing 

the signal and x*<2) is the remaining p2 variables. The full squared distance is measured 

by 

Tp
2 =T2(x*) = n(,a0-x*)'2-V0-x*) (2-33) 

and the reduced squared distance corresponding to the pi subset is 

Ti=T2(x^) = n(^-x^)'Z(-;(^-x^) (2-34) 

where u-o and E are partitioned as is x *. If the Difference (D = T2 - T2,) is large, the 

null hypothesis that the pi subset caused the signal is rejected. This is equivalent to 

testing that the pi subset "discriminates" just as well as the full set of p variables. 
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Murphy showed that when H0 is true D ~ %2
p2. If (u., Z) are estimated, Murphy 

references Seber (1984) for the appropriate F-test. A disadvantage of this procedure is 

that it relies on the T which is known to signal slower than MCUSUMs or MEWMAs. 

Other Methods 

Graphical Methods 

The high dimensionality of multivariate quality control generally makes plots of 

joint regions impossible. One-at-a-time charts can maintain the independent status of 

each variable, and Blazek et al. (1987) describe an approach where polyplots provide a 

more compact status of each variable. The length and direction of vectors attached to 

vertices of p-dimensional polygons indicate the state of each variable. To avoid Type I 

error distortion, the Hotelling T statistic is placed near the polyplots. While these plots 

are more compact than separate charts, it should be noted that reliance on individual 

charts may not help with diagnosis in the instance of special relationships between 

variables as demonstrated earlier in Figures 1-1 and 1-2. 

Pattern Recognition 

Run rules developed by the Western Electric Company in 1956 provide decision 

rules for detecting non-random patterns on univariate Shewhart control charts that may 

suggest a problem even though the plots are within control limits (Montgomery, 1991). 

Chih and Rollier (1994) adapt such an approach to the bivariate case. Using simulation, 

specific types of shifts are induced in various combinations between the two variables. 
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The range of values for the T2 statistic are divided into zones. Each combination of shift 

is characterized by the distribution of T2 observations falling into each zone. Exploration 

of the generalizability of the method to p-variables would be of interest - a disadvantage 

could be that extensive characterization of expected types of shifts over many variables 

would be required. 

Neural Nets 

When statistical properties of a problem are unknown, decision functions may be 

determined by training (Gonzalez and Woods, 1992). Neural networks attempt to mimic 

the structure of the brain by forming many layers of interconnected nodes that receive 

inputs and apply transformations or weights to the inputs and propogate the transformed 

value as node outputs. Transformation parameters are determined by presenting a known 

input and desired result at the input and output sections of the network, respectively. 

"Training" algorithms requiring many iterations are used to determine parameters that 

result in a suitably small error rate in providing the correct output for the known input. 

While much of the original work focused on creating learning machines, as well as 

speech, handwriting, and other pattern recognition abilities, Stern (1996) (with 

discussion) summarized their application in applied statistics, noting successes in time 

series prediction, classification, and regression applications. One application of a neural 

net provided results comparable to principal components. Stern (1996) noted that neural 

nets seem best suited to predictive problems when large datasets and substantial training 
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is available, but noted the disadvantage that neural nets do not provide insight into 

relationships between variables. 

In the discussion of Stern's (1996) work, De Veaux and Ungar emphasized the 

need for determining what the goal is in deciding whether or not to use neural nets; does 

one only want to make observations/predictions, or is it better to try to achieve 

understanding of the process phenomenon through an empirical model? Because of 

highly interconnected structures with many levels, neural nets are not helpful for the latter 

goal. Stated advantages are: resilience to data collection errors; resistance to outliers; no 

requirements for equation forms; less sensitive to multicollinearity; and the flexibility to 

incorporate models in portions of the network. Disadvantages include: no prediction 

intervals indicating uncertainty; less process understanding; and requirements for large 

amounts of historical data and net training. The impact of data and training requirements 

could be felt time after time when one considers that manufacturing processes are often 

"tweaked," to incorporate improvements. Continual retraining of the net may be required. 

As in the other multivariate methods mentioned, determination of cause may also 

prove to be a challenge since the inputs are passed through the net and resolved into a 

single statistic for comparison against a threshold. 

Runger (1996a) noted that since neural nets are not based on theory that requires 

independent observations (with respect to time), they may be robust to the presence of 

autocorrelation. 



31 

Empirical Methods 

Willemain and Runger (1996) noted several reasons behind a trend away from 

relying on charts that assume underlying normality in the data: increased automation is 

providing more data which may be used as empirical reference distributions; as control 

charts enjoy wider use, more non-normal data is encountered; statistics other than the 

mean with non-normal or unknown distributions are being charted; when process run 

times are long, individuals charts are used so that the Central Limit Theorem does not 

apply; and more data per unit time requires widening control limits to maintain tolerable 

false alarm rates per unit time. 

Willemain and Runger (1996) explored the use of historical data and order 

statistics as empirical reference distributions, concluding that when thousands of 

observations are available, performance is very similar to charts that use underlying 

distribution theory. For symmetrical two-sided charts, they recommend that the number 

of observations required to form the empirical reference distribution be no lower than 

four times the desired in-control ARL. 

Montgomery et al. (1993) used empirically derived principal component scores to 

define control regions in order to make the procedure less sensitive to autocorrelation. 

The "training" of a neural net mentioned previously may also be considered an 

empirical method. In general, it appears the empirical approach is promising when 

autocorrelation is present, or when variable distributions are unknown, or are known to 



32 

violate assumptions required for other techniques. A disadvantage is that large numbers 

of historical observations are required. 

Cross-Correlation vs. Auto-correlation in 
Statistical Process Monitoring 

Correlation refers to relationships between variables within an observation vector 

while autocorrelation refers to relationships between observations of the same variable 

through different time periods. In a n x p matrix where the n rows represent the 

observations (trials) and the p columns represent the variables, correlation could be 

observed between variables in the same row, and autocorrelation could be observed 

between rows in the same column. 

For multivariate quality control, correlation between variables within an 

observation is desirable. Hawkins (1991) states "although one could monitor the process 

using separate charts of the variates, to the extent that these measurements are mutually 

correlated, one will obtain better sensitivity using multivariate methods that exploit the 

correlations." Figure 2-1 shows a hypothetical control ellipse, "B", for two independent 

normally distributed variables. The rectangular region "A" represents a joint control 

region formed by the use of individual control charts on each variable. The area outside 

of rectangle "A", but inside ellipse "B" represents values for which one of the 

simultaneous individual charts would indicate a shift, when in fact, the correct joint 

control defined by ellipse "B" does not indicate a problem. This demonstrates the 

distortion of Type I error that occurs when using several individual control charts in a 
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multivariate situation. Even when the variables are independent, there is some benefit to 

using multivariate techniques to avoid this distortion. 

The value of multivariate techniques really shows when relationships exist 

between the variables of interest. Figure 2-2 shows the control ellipse for two positively 

correlated variables 

m 
A 

ja2 

Figure 2-1. Control ellipse for two independent variables 
(Adapted from Montgomery, 1991) 

Figure 2-2. Control Ellipse for two positively correlated variables. 
(Adapted from Montgomery, 1991) 
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Points inside the rectangle "A" but outside the ellipse "B" violate the usual 

relationship between the variables, but would plot inside the control limits on the 

individual control charts. Figure 2-2 demonstrates a real strength of multivariate control 

methods — when relationships exists between the variables of interest, detection of 

unusual events is improved. While correlation between variables is desirable, the same 

cannot be said for autocorrelation between observations on the same variable. 

Autocorrelation in the data may be present from any one of several causes. 

Montgomery and Mastrangelo (1991) mention: 

In discrete parts manufacturing, the development of sensing and measurement 
technology has made it possible, in many cases, to measure critical 
dimensions on every unit produced. Sensors are also widely used in the 
chemical and process industries for tanks, reactors, and material streams. All 
manufacturing processes are driven by inertial elements, and when the 
frequency of sampling becomes short relative to the process time constant the 
sequence of process observations will be autocorrelated. 

Montgomery and Peck (1992) state "a primary cause of autocorrelation in regression 

problems involving time series data is failure to include one or more important regressors 

in the model." It's becoming not only possible, but likely, that some degree of 

autocorrelation will be present in industrial process data. 

In univariate quality control, autocorrelation has undesirable effects. Harris and 

Ross (1991) and Montgomery and Mastrangelo (1991) show that positive autocorrelation 

results in more false alarms than would be expected if standard control charts based on 

the assumption of uncorrelated data are applied. Harris and Ross point out the practical 

implication of this problem ~ the increased false alarms result in either abandoning the 
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use of control charts, or widening control limits to reduce the false alarms (which also 

decreases the sensitivity of the control chart to real process shifts). Harris and Ross also 

explore the alternative of fitting an ARIMA model to the data, then using a control chart 

on the residuals. In this scenario, positive autocorrelation makes it difficult to detect 

unusual events. The same analysis shows improved detection when the observations are 

negatively correlated. Noting that "natural" negative autocorrelation seemed to improve 

detection, and that industrial data is seldom negatively correlated, Keats and Shlaes 

(1994) propose a transformation to induce negative autocorrelation into positively 

autocorrelated data — while event detection is improved, the procedure also exhibits 

increased false alarms. Montgomery and Mastrangelo (1991) propose a moving 

centerline Exponentially Weighted Moving Average (EWMA) that works "reasonably 

well" when the observations are positively autocorrelated at low lags and if the process 

drifts moderately slowly. 

It is more difficult to categorize the effect of autocorrelation in multivariate 

quality control. Mastrangelo, Runger and Montgomery (1996) provide an excellent 

discussion of this issue for two types of multivariate procedures. They show the 

Hotelling T2 "attenuates the autocorrelation in the process data." Their proof shows the 

lag one autocorrelation of the T statistic is 

P = £p?/p (2-J 
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where pi is the lag one correlation of the ith component of x. Because -1 < pi < 1, p will 

always be smaller than the individual pi. The presumption is that the T2 is less sensitive 

to autocorrelation than univariate control techniques. For Principal Components Analysis 

(PCA) they discuss results of Joliffe (1986) and Jackson (1991) that show traditional 

assumptions of normality and independence are not essential in order for PCA to be 

effective in a descriptive or exploratory manner (although these assumptions are required 

if statistical inferences are to be made). Mastrangelo et. al. conclude that PCA with 

correlated observation vectors [autocorrelation] indicates process upsets remarkably well. 

The effect of autocorrelation on the performance of multivariate control applied to 

regression adjusted variables (Hawkins, 1991) has not been assessed. Hawkins assumed 

that "the successive measurement vectors obtained over time are mutually independent." 

The reason for this assumption has to do with the properties of the least squares estimates 

for the regression parameters. One of the fundamental assumptions in linear regression is 

that error terms are uncorrelated (Montgomery and Peck, 1992). When this assumption is 

violated, the least squares regression coefficients are no longer minimum variance 

estimates, and MSE may seriously underestimate CT , giving false impressions of accuracy 

and possibly indicating one or more regressors may be important when they are not 

(Montgomery and Peck, 1992). Presumably, the presence of autocorrelation could drive a 

poor model fit and adversely impact regression based control methods proposed by 

Hawkins. This may or may not happen since Montgomery and Peck state that it is 

sometimes possible to eliminate apparent autocorrelation by selecting the correct 
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regressors for the model. When autocorrelation is present due to true inertia in the 

process, then it is less likely that proper variable selection will fix the problem. Even if 

the problem remains, it's effect on shift detection is unclear -- the regression adjusted 

variables may still be analyzed using a T2 or other procedure that may not be as sensitive 

to autocorrelation in the multivariate case. 

There's a history of problems driven by autocorrelation in the univariate case, and 

effects of autocorrelation in multivariate control are largely unexplored. As a minimum, 

one needs to be alert to the presence of autocorrelation in the variables being monitored. 

Summary 

This literature review provides a sense of both the age of founding ideas yet the 

newness of application and resurgence of research in multivariate statistical process 

monitoring. Techniques under consideration vary widely, from direct extensions of 

univariate statistical process monitoring, to new application of other multivariate analysis 

methods to the process monitoring application, and to the generation of empirical 

methods when reference distributions are unknown. 

The following investigation focuses on the researcher's interest in tailoring 

techniques to what is known about the process structure and anticipated assignable cause, 

assuming that some knowledge about the process has been gained. Regression 

adjustment methods show the potential for flexibility in handling non-linear relationships 

between data, and differing process models, though they rely heavily on assumptions that 

process upsets change the relationships between variables. 



CHAPTER 3 

MULTIVARIATE STATISTICAL PROCESS MONITORING AND DIAGNOSIS 

USING GROUPED REGRESSION ADJUSTED VARIABLES. 

Introduction 

A common theme among several of the existing multivariate statistical process 

monitoring (MSPM) methods is the recommendation that process knowledge should be 

used to select a suitable monitoring procedure. The first consideration involves 

considering any unique structure in the process itself. For example, Mortell and Runger 

(1995) propose a model and control strategies for multiple stream processes to detect 

shifts in the mean of all streams vs. a shift in a single stream of a multi-head filling 

machine. Hawkins (1993) modified his original regression adjustment approach to be 

more suitable for monitoring cascade (sequential value added) processes. 

Other considerations involve expectations concerning the nature of a potential 

process upset: 1) whether a shift is likely to occur in one, several, or all of the quality 

characteristics being monitored; 2) whether the relationships between quality 

characteristics are maintained under shift conditions (model-fixed) or changed (model- 

void) (Runger, 1996b); and 3) whether a shift is likely to occur in any direction within the 

region of interest or towards a known out-of-control state (Healy, 1987). The possible 

combinations of these factors mounts quickly, and no single monitoring method emerges 

as an overall superior approach. 

This chapter identifies a potentially common multivariate process monitoring 

scenario and extends the idea of using process knowledge to determine an appropriate 

control statistic for assignable cause detection and identification. Some of the material in 
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Chapter 2 is summarized here to provide motivation for the proposed technique. 

Background 

Hotelling (1947) formulated a multivariate extension to the univariate Shewhart 

chart. Assuming that p quality characteristics are jointly distributed as p-variate normal 

and that random samples of size n are collected, Hotelling's chart signals a statistically 

significant shift in the mean when 

%] =(X1-fio)'S-1(Xi-|^o)>h1 (3-1) 

where hi is the selected control limit. Most often, S and flo are unknown and must be 

estimated by X and S using historical data {when these are substituted into (3-1), the 

resulting expression is often referred to as Hotelling's T2}. When |0, and S are known [or 

estimated from a relatively large number of preliminary samples] the upper control limit 

for the x2 chart [T2] is often set to UCL = x„iP • The average run length (ARL) properties 

of the x chart depend only on the distance of the shift from the target mean vector, jLlo- 

This distance is given by 

V = V0i-n0)'E-V-n0) (3-2) 

From this point forward, we assume the common practice that variables are standardized 

to unit normal with the zero vector as the target mean. Under this assumption, the 

covariance matrix becomes the correlation matrix, and the distance expression in 

equation (3-2) reduces to 
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^=^'S-y (3-3) 

Under shift conditions, the %2 statistic follows the non-central chi-square distribution with 

the non-centrality parameter equal to X^2. Lowry and Montgomery (1995) and Wierda 

(1994) give additional guidance for adjustments to the sample statistic and reference 

distribution depending on the control phase (Phase I - retrospective test for control 

initiation versus Phase II - continued monitoring) and the sample size (a single 

observation on each characteristic, or the sample mean of several observations on each 

characteristic). 

Multivariate extensions of cumulative sum (CUSUM) and Exponentially 

Weighted Moving Average (EWMA) are also available. Crosier (1988) proposed the 

"MCUSUM" which places all the univariate CUSUMs into a vector (which is shrunk 

towards zero in the absence of significant deviations from the multivariate mean) then 

computes a length on this vector. Pignatiello and Runger (1990) introduced an alternate 

formulation of the multivariate CUSUM called "MCI" that accumulates distances of the 

sample averages from the target mean and squares this accumulated quantity. 

Lowry et.al. (1992) described a multivariate EWMA that performs as well as the best 

MCUSUMs, but is considered easier to formulate and possesses predictive properties. 

The procedures mentioned thus far have the important property of directional 

invariance; that is, the average run length (ARE) to detect a shift depends only on the 

distance [equation (3-3)] of the shift from the multivariate mean (this is true for the 

MEWMA only as long as the weights used in each univariate EWMA are equal). This 
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directional invariance property is of special importance when characterizing a new 

process, or when available process knowledge suggests that shifts may occur in virtually 

any direction away from the target mean. In other cases, it is possible and may be 

desirable to increase a control scheme's sensitivity by using knowledge of possible upset 

mechanisms to "aim" or sensitize the control procedure. Intuitively speaking, why 

expend resources monitoring regions towards which the process mean is unlikely to shift? 

Several techniques are available that use process knowledge to sensitize shift detection 

and/or improve diagnosing assignable cause. 

Mandel (1969) introduced the idea of a regression control chart to adjust the 

quality characteristic of interest (post office man-hours expended) to account for an 

outside covariate (mail volume) — parallel control limits were based on a constant times 

residual mean squared error (versus using the regression confidence limits). In this 

scenario, the man-hours mean is variable, and it is only important to identify offices or 

changes at a specific office that violate the "usual" relationship between man-hours and 

mail volume — "model fixed" changes in mean man-hours were expected and not 

considered important by management. Note that the property of directional invariance for 

the control mechanism is deliberately eliminated. 

Healy (1987) proposed a CUSUM based on a linear combination of the original Xj 

(reducing to a univariate CUSUM procedure) that is designed to discriminate between the 

in-control multivariate mean and a specific value of the multivariate mean that 
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corresponds to an out-of-control or undesirable value. If shifts in other directions are 

likely, Healy recommends adding CUSUMs of linear combinations that are orthogonal. 

Hawkins (1991) synthesized Mandel's regression adjustment, with Healy's 

approach for maximizing sensitivity to a structured shift, using the additional assumption 

that a shift would occur in only a single variable. The procedure involves a control 

statistic for each variable that is based on the residual obtained from comparing each 

observation to the predicted value from a regression of the jth variable on all other j-1 

variables. Hawkins (1993) modified his technique for application in cascade processes by 

using only "upstream" observations as the independent variables in the regression 

adjustment. Hawkins showed these procedures are designed to detect model void types 

of shifts and, as such, have directionally variant ARL performance. In contrast to 

Hawkins' use of simultaneous univariate CUSUMs, Timm (1996) applies "stepdown" 

finite intersection tests (FIT) to the same regression adjusted variables. 

Zhang's (1984, 1985) cause selecting control charts incorporate a two-step 

approach that monitors incoming quality and also monitors outgoing quality adjusted for 

the incoming quality. The adjustment may be made by theoretical or empirical models. 

The combinations of possible signals in each chart help to diagnose whether incoming, 

outgoing, or both measures contain assignable cause. Wade & Woodall (1993) showed 

that using regression prediction limits instead of confidence limits provided more 

predictable ARL performance in this procedure. 
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Runger (1996b) noted applications in which shifts in the mean may only occur in 

a subset of variables. For example, the manufacturing of magnetic tape consists of wet 

processes that coat the web with a magnetic ink and dry processes that slit and test the 

tape. Typically, an assignable cause only affects the mean of either the wet or dry 

variables, although the variables are not necessarily independent. Runger proposed the 

U chart, a projection-based method designed to be most sensitive to shifts in a specific 

(guided by process knowledge) subspace of the full variable set. 

Principal components (Hotelling, 1933) decomposes data into orthogonal linear 

combinations based on the eigenvectors of the ordered (greatest to least) eigenvalues that 

describe the present variability in the data. The number of principal components 

available is equal to the number of variables. Monitoring methods based on a full set of 

principal components retain the properly of directional invariance. Jackson (1980) notes 

that most process variability is often captured in the first few principal components, and 

that the task of monitoring a large number of variables can be reduced into monitoring a 

few principal components. Scranton et. al. (1996) showed the improvement in ARL 

performance that can be obtained by using an MEWMA on a subset of principal 

components. The loss of directional invariance depends on the composition of the 

retained principal components. In the example used by Scranton et. al. (1996), the first 

three components were used which did not contain any function of two out of the original 

ten variables. The demonstrated control procedure would be insensitive to shifts in those 
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two variables. The likelihood and impact of missing a structured shift is an important 

factor in selecting any of the procedures described. 

Grouped Regression Adjustment 

Extending the idea of tailoring a control mechanism to the process structure and 

expected structured shifts, we may hypothesize a likely scenario not yet addressed by the 

aforementioned techniques: 

1) For a process that may be characterized as adding value sequentially at each 
process step, there may be several (and varying numbers of) quality measures of 
interest at each step [in contrast to the Yi, Y2,..., Yj single measure per step 
ordering of Hawkins (1993) and the one variable at a time Stepdown Finite 
Intersection Test of Timm(1996)]. In this type of process, a shift in an early 
subset of variables will propagate into downstream subset measures even though 
nothing may be wrong at those later stages [in contrast to Runger (1996b) in 
which only a distinct subset of variables is affected by an assignable cause]. For 

example, an assignable cause at the first step resulting in a mean shift from 0 to [i\ 

will also induce a model-fixed mean shift of (3'jLti (where ß contains the 
coefficients from regressing X2 on Xi) into the variables of the second step (and 
so on), even though nothing may be wrong with the process at later steps. 
Hawkins refers to this downstream shift propagation as "the cascade property." 

2) The variable subsets associated with each process step can form sequences 
(e.g. input measures, then several groups of process step measures, then output 
measures) — an extension to the input/output cause selecting charts proposed by 
Zhang (1984, 1985). Zhang's treatment of larger multivariate scenarios primarily 
allows several input variables to be considered in the adjustment of a single output 
variable. More than one output variable would be handled in separate procedures. 
In the proposed scenario, it is desirable to simultaneously monitor several process 
measures simultaneously, after adjusting for incoming quality from the previous 
step. 

3) If process knowledge suggests model "void" types of shifts, then relying on a 
small subset of principal components may be risky as the first few components are 
designed to be most sensitive to model "fixed" variability in the system. In cases 
where the principal components are composed of variables across many process 
steps in the cascade, determining assignable cause may be difficult. 
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The following notation is used to define the proposed procedure. For p total 

variables partitioned into k groups, let p> for i = 1 ...k denote the number of variables 

within a group. Let the pi x 1 vector Xi denote the variables in the first group. 

Furthermore, let the pi x 1 vector Xj .i,2,...,i-i denote the variables in group i adjusted for the 

variables in the preceding groups. For example, X2., = X2 -E^E^'X,. Let Uj represent 

the control statistic [on which a T2, MCUSUM, or MEWMA is applied independently to 

the elements of the ith group]. The proposed control statistics are: 

U,=X, U2=X2., U3=X3.12       ...       Uk = Xk.i,2,...,k-i 

Note that when all pi = 1, this method reduces to the approach of Hawkins (1993). 

Intuitively we see that each successive group has the effects of all variables in 

previous groups removed. An important advantage is that these statistics are independent 

of each other. A proof of this result is given in Appendix 3. A. Independence of these 

statistics allows us to design the Type I error for the joint procedure by setting the a for 

each group such that the joint procedure Type I error is a = 1 - (1- a') and the desired 

joint in-control ARL is 1/ot (using T charts). 

For the first group, the mean vector (the zero vector under Ho) and correlation 

matrix are formed in standard fashion using the variables in X\. The mean vector and 

covariance matrices for the subsequent groups are conditional on the earlier groups (see 

Mardia et. ah, 1979, p.63). For example, 

M-2.1 = M-2- S21S11"1 Hi (3-4) 
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^22.1 = ^22 " ^21-^11    £-12 (3-5) 

where X is partitioned into Xi containing all variables in preceding groups and X2 

containing the variables in the group under consideration (downstream variables 

excluded). Also, S is partitioned accordingly. 

Due to the conditional nature of the proposed control statistics (with the exception 

ofthat applied to the first group which maintains directional invariance), ARL 

performance is highly dependent on the partitioned covariance matrix as well as the shift 

size and direction. An example based on actual process data serves to illustrate the 

advantages of the proposed approach compared to the blanket use of a single %2 chart on 

X. While the x chart comparison is used for simplicity, MCUSUM or MEWMA 

techniques could also be applied to the proposed U statistics for better overall ARL 

performance. 

Example 

This example is a modification of the cotton spinning example used by 

Duncan (1986) and Hawkins (1993) {see Appendix 3.B for explanation of 

modifications}. The following quality characteristics are of interest: 

Xi = Fiber Fineness 
X2 = Fiber Length 
X3 = Fiber Strength 
X4 = Skein Strength 

For demonstration's sake, Hawkins assumed the process model that these four variables 

satisfy the cascade property, with shifts in any variable propagating to downstream 
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variables. From the variable descriptions in Duncan (1986, p. 835 - the source of 

Hawkins' example data) it is apparent that Fiber Fineness, Fiber Length, and Fiber 

Strength are innate properties of a fiber that is loaded into the loom for spinning. Skein 

Strength is the strength of the weave that is produced as an output from the loom. An 

assignable cause in the production of the input fiber would be likely to affect several if 

not all of the "input" measures. These, in turn, could influence X4, satisfying the cascade 

property between steps. Of course, an assignable cause associated with the loom could 

shift the output measure. These assumptions support an input/output grouping of the 

variables. A second output measure X5, "Skein Stretch", is fabricated to support the 

proposed process scenario [see Appendix 3.B for details]. 

For an in-control ARL of 200, the joint procedure Type I error = .005. To 

maintain this, a is set at 0.0025 for each of the two groups. For Ui the % chart control 

limit isx2oo25 3 = 14.32. For U2 the %2 chart control limit isx2
0025,2 = H-98. 

Case 1 - Shift in the spinning process. Suppose that the input fiber 

characteristics remain in a state of control, but a problem with the spinning process 

occurs such that the mean of X4 (X5) is decreased (increased) by one standard deviation 

such that |0,'x = [0,0,0,-1,1]. The means of the proposed control statistics then are 

M-'ui = [0,0,0] and |H,u2 = [-1, 1]- This is a model-void shift that regression adjustment 

procedures detect well. Using the correlation matrix in Appendix 3.B with equations 
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(3-5) then (3-3), the distance of the shift, X, is 2.083 (see Appendix 3.C for verification of 

shift distance and non-centrality parameter calculations). From the non-central chi-square 

distribution, the probability of obtaining a point above the U2 control limit is 0.11713 

(See Appendix 3.D for SAS code/output listings used to obtain values under non-central 

chi-squared distribution). The ARL for the joint procedure under this shift condition is 

1 / [l-(.9975)(.88287)] = 8.380. 

If the entire variable set is monitored with the traditional chi-square chart, the 

original correlation matrix is used directly in (3-3) to determine the shift distance, X, of 

2.083. The control limit is x 005 5 = 16.75. Under this shift condition, the probability of 

observing a point above the control limit is 0.09178. The ARL for this procedure is 

1/0.09178=10.896. 

While the assumed shift is model-void between the groups, the general 

relationship (negative correlation) between X4 and X5 is maintained. Consider another 

model-void shift where this relationship is also violated such that |u'x = [0,0,0,-1,-1]. For 

this shift, the ARL of the proposed procedure is 2.73, while the ARL of the traditional 

chi-square chart is 3.47. 

In Case 1, the shift detection is faster using the proposed procedure since the 

variance of residuals contained in U2 is much smaller than the variance of the original 

[X4, X5], and this provides a stronger "signal to noise" ratio. It is likely that the signal 

would correctly be in U2 indicating a problem with the spinning process {though a false 

alarm in Ui is still remotely possible}. 
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A Principal Components Analysis using SAS PRINCOMP produced the 

components in Table 3-1 and the eigenvalue analysis in Table 3-2 (See Appendix 3.E for 

SAS Code/Output Listing). Although the first two (three) principal components capture 

82% (91%) of the variability in the dataset, the loadings in the principal components 

highlight a potential problem with their use. Since at least one variable in both the input 

(Xi - X3) and output (X4, X5) variable sets has a substantial loading, a signal in a principal 

component would be difficult to interpret ~ is the assignable cause due to the input fiber 

properties, or to a problem in the spinning process, or both? This problem is especially 

severe in the first principal components where all variable loadings are approximately 

equal in magnitude. If process knowledge of likely shift structures suggested shifts in the 

direction of principal components, then a combined approach of monitoring with PCA, 

and diagnosis with Uk may be advisable. 

TABLE 3-1. Principal Com] ponents of Cotton Fiber Data 
Variable 1st PC 2nd PC 3rd PC 4th PC 5th PC 

x, -.402885 0.539649 0.168018 0.613428 0.376746 
x2 0.402673 0.549622 0.491714 -.020977 -.541800 
x3 0.357925 -.575535 0.415586 0.605516 0.035894 
x4 0.554037 0.185275 0.144552 -.294608 0.742312 
x5 -.490379 -.202799 0.732380 -.412095 0.110450 

TABLE 3-2. Eigenvalue Analysis 0 

Prinl 
Prin2 
Prin3 
Prin4 
Prin5 

Eigenvalue 

2.74064 
1.37028 
0.42228 
0.33247 
0.13434 

Cotton Fiber Data Correlation Matrix. 
Proportion 

0.548127 
0.274055 
0.084455 
0.066495 
0.026868 

Cum Proportion 

0.54813 
0.82218 
0.90664 
0.97313 
1.00000 



50 

Case 2 - Shift in the input fiber characteristics. Suppose the spinning process 

was functioning correctly, but that the input fiber is off target. Possible causes of this 

situation may be selection of incorrect material during loom loading, or loading of 

material thought to be correct, but contains off-target properties due to problems in its 

manufacture. Assume a shift such thatpj = [1,-1,-1]. Furthermore, assume that \ii 

undergoes a model-fixed shift due to the cascade property in the process. This shift is 

determined by the following regression equations obtained using the original correlation 

matrix: 

X4 = -0.426X, + 0.712X2 + 0.054X3 

(3-6) 
X5=   0.319X,- 0.534X2-0.040X3 

Applying equations (3-6), u^ = [-1.192, 0.893]. The complete shift structure in X is 

|Li'x = [1,-1,-1,-1.192, 0.893]. From equation (3-4), the mean of U2 remains [0,0]'. The 

vector p., and matrix En are used in (3-3) to calculate the Ui shift distance, X, of 1.4536. 

From the non-central chi-square distribution, the probability of obtaining a point above 

the Ui control limit is 0.02804. The ARL for the joint procedure under this shift 

condition is 1 / [1-(.97196)(.9975>] = 32.819. 

Using a traditional chi-square chart on all X, the original correlation matrix is 

used with (3) to determine the shift distance, X, of 1.4536. The control limit is 

X 005 5 = 16.75. Under this shift condition, the probability of observing a point above the 

control limit = 0.03235. The ARL for this procedure is 1/0.03235 = 30.912. 
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In this case, the cascade property induces changes in downstream variables as 

well, and all contribute to the %2 chart on X helping it to signal slightly faster than the 

joint procedure involving Uk. While the faster signal is desirable, diagnosis of the 

assignable cause using decomposition methods on the full set % statistic may be 

misleading. For example, Murphy's (1987) discriminant-analysis-based approach 

partitions X into Xi, containing suspect variables, and X2, containing all other variables. 

Defining T2 as the T2 statistic on the full set of variables, and T2 as the T2 statistic on the Op ' Pi 

suspect set of variables, Murphy defines the difference statistic D = Tp
2 - T2 . When D is 

large, the hypothesis that the pi subset caused the signal is rejected. Placing X4 and X5 

into the suspect set Xi, D = 2.113 - 1.428 = .685. We note that T2 is almost as large as 

T2, indicating that X4 and X5 are contributors, though we know nothing is wrong with 

the loom in this scenario. This problem is not due to Murphy's procedure, but rather that 

the procedure is applied directly to X without accounting for shift propagation in the 

process. In contrast, signals in the Uk directly indicate a problem within the associated 

variable subset. 

Case 3 - Composite Shift.    Table 3-3 provides the results from combining the 

shifts in cases 1 and 2. Again, the cascade property in the process allows the input 

material change to induces further changes in X4 and X5 above and beyond the process 

shift, contributing to a slightly faster signal in the x2 chart on X. Decomposition is likely 
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TABLE 3-3. Comparison of x chart on Uk vs. on X for composite shift case. 

Stat Mean a UCL X X2 
^a.p.X ARL 

Joint 
ARL 

Ui 

u2 

[1,-1,-1] 
[-1,1] 

.0025 

.0025 
14.32 
11.98 

1.4536 
2.0833 

2.113 
4.340 

0.97196 
0.88287 

35.66 
8.54 

7.05 

X 
[1,-1,-1, 
-2.192, 
1.893] 

.0050 16.75 2.5399 6.451 0.82420 5.69 

to correctly show causes in both groups; however, the "trouble" in the second group is 

likely to be overstated. 

Other Impacts Associated with Amount of Grouping 

The partitioning of p variables into k groups in this procedure is not arbitrary. It is 

driven by the structure of the process under consideration and associated potential upset 

mechanisms. It would be undesirable for the amount of grouping alone to significantly 

influence the ARL performance. Table 3-4 investigates various levels of groupings of 

p = 12 variables (see Appendix 3.F for SAS code/output listings). The key assumption in 

Table 3-4 is that a shift occurs in the mean of a single group of variables. As the number 

of groups increases, control limits must be raised to control Type I error. A higher 

number of groups results in a smaller number of variables in each group. The fewer 

degrees of freedom within a group reduces the control limit for a group. These effects act 

in opposition, tending to balance each other for small shifts. There are minor differences 

in ARL performance for moderate to large shifts. 
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TABLE 3-4. Average Run Lengths of %2 Chart Combined Procedure Involving 
k charts (groups) with pi variables each (p = 12). 

k(Pi} 6{2} 4{3} 3{4} 2{6} 
UCL 14.175975 15.78961 17.32726 20.24635 

X ARL 

0 200.000 200.000 200.000 200.000 
0.5 170.698 169.996 169.316 168.053 
1 99.104 100.057 100.510 100.645 

1.5 41.723 43.771 45.287 47.319 
2 16.459 17.790 18.892 20.614 
2.5 7.185 7.846 8.429 9.416 
3 3.670 3.988 4.279 4.795 

Summary and Conclusions 

Extending the idea that process knowledge should be used to select a suitable 

monitoring method, this paper introduces control statistics appropriate for the monitoring 

and shift diagnosis of a cascade process involving several (and varying numbers of) 

quality characteristics at each process step. While a shift detection in the first group of 

variables depends only on the statistical distance of the shifted mean from the target 

mean, detection in subsequent groups is very much a function of the correlation structure 

between variables as well as the structure of anticipated shifts.   In cases where the shift is 

in any but the first group, shift detection may be faster using the proposed procedure since 

the variance of residuals contained in U2... Uk is smaller than the variance of the original 

X2 ... Xk, providing a stronger "signal to noise" ratio. 

In some cases, a signal in a subset is enough to identify assignable cause. In those 

cases where it is not, then this subset forms a reduced starting set for adaptations of 
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diagnostic methods proposed by Murphy (1987), Chua and Montgomery (1992), and 

Mason, Tracy, and Young (1995). Since the performance of these methods depends, in 

part, on the number of variables involved, the benefit of this approach is starting the 

identification process with a smaller and "corrected" subset of variables. It's important to 

note that using these diagnostics on statistics that rely on the full set of X (such as 

decomposing a single T that contains all variables in X metric) could lead to erroneous 

diagnosis since shifts are propagated downstream in the process structure under 

consideration. 

Should the study of a process indicate that another monitoring technique provides 

better signaling performance for anticipated shift structures, the proposed statistics retain 

diagnostic value under the assumed process model. 



APPENDIX 3.A 

Proof of Independence Among Proposed Control Statistics 

At the current process step, consider a partition of X into Xi (an n x pi matrix 

containing n observations of variables in all preceding steps), X2 (an n x P2 matrix 

containing variables in the current step) and X3 (downstream variables), the Uj partition X 

such that: 

U 

where B is a P2 x pi matrix, the rows of which contain parameter estimates from a 

regression of each variable in X2 on all variables in Xi. From familiar multivariate 

normal theory (see Tong, p.32), If X ~ </fp(li,S) and U = CX + b, then U ~ ,yfp(C(l +b, 

= 

-B V 
"X," 

X2_ 

CIC). Letting 

C = 
rxu 0] r°i Pi andb = 
-B XPJ uj 

then 

^u 
p. 

B    I 

0 

P2 ^21     ^22 

X -B" 

0 0 
which reduces to: 

£u = 
2I1 (S21_B2ll)' 

S21-BSn    Z22+BSnB'-BE12-Z21B'_ 
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For Ui and U2 to be independent, B must be chosen so thatS21 - B£n =0. This 

condition is met when B = E^E^,1.  To complete the proof, we must show that this 

expression for B is equivalent to the least-squares parameter estimates obtained through 

regression. Allowing X to represent the regressors from Xi, and allowing Y to represent 

the "dependent" variables in X2, we note that since X and Y have been standardized: 

EX X            ^-1          X Y 
11 =  -   and L\2 = 7 

n-1 n-1 

Substituting into the expression for B, 

XX XY 

n-1 n-1 

Multiplying both sides by n-1 leaves 

XX B = XY 

which we recognize as the familiar least-squares normal equations for which the 

solution is: 

B = (XX)"1 XY 

The least-squares estimate of B meets the conditions for independence between Ui 

and U2. 
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APPENDIX 3. B 

Modification of Hawkins (1993) Example 

Hawkins (1993) illustrated the efficacy of the Yj statistic using the cotton yarn 

data from Duncan (1986, p. 835). Duncan labeled the variables in the following manner: 

Xi = Skein strength 
X2 = Fiber Length 
X3 = Fiber Strength 
X4 = Fiber Fineness 

Hawkins modified this so that the variable numbering more closely followed the "natural" 

ordering of a sequential value-added (cascade) process. In doing so, he re-labeled the 

variables according to 

Xi = Fiber Fineness 
X2 = Fiber Length 
X3 = Fiber Strength 
X4 = Skein Strength 

We were unable to duplicate some of the basic summary statistics reported by Hawkins. 

For example, we found the correlation between Fiber Fineness (Xi) and Tensile Strength 

(X3) to be -0.666, whereas Hawkins reported it to be -0.16. The multiple regression of X4 

on the other variables was reported to be X4 = -0.343Xt + 0.606X2 + 0.352X3; whereas, 

we found it to be X4 = -0.426Xj + 0.712X2 + 0.055X3. We note that the primary 

differences are in relationships involving X3. This does not effect the validity of 

Hawkins' results (the source may simply be a difference in several of the data points 

entered upon which a correct analysis was made) - it merely makes comparison difficult. 

To make the comparisons in this paper we use the data set found in 
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Duncan (1986, p. 835) but retain the labeling convention used by Hawkins that reflects 

the more "natural" ordering. 

Furthermore, the variable descriptions in Duncan indicate that X] - X3 are 

properties of a fiber "raw material" that is then woven into a skein (the strength of which 

is X4). This makes for a natural input / output grouping of variables for use in our 

examples. Since a group size of one in the output grouping is overly simplistic, a second 

output variable "Skein Stretch" (X5) was fabricated. This variable is posited to have a 

highly negative correlation with Skein Strength (X4) as a stronger weave should stretch 

less and vice versa. This correlation was chosen as - 0.7; moderately strong, but not the 

strongest exhibited in the dataset. The relationships between X5 and the other variables 

are posited to be similar in size to those of X4 (again operating in the opposite direction), 

but attenuated approximately 25% to accommodate a sense that stretch may be slightly 

more a function of the weave process (vs. fiber characteristics) than is the strength 

measure. 

For standardized ^(0,1) variables, the covariance matrix is the correlation matrix. 

Based on the above modifications to the Duncan cotton fiber data, the correlation matrix 

used for this example is: 

x, x2 x3 x4 x5 
X, 1.000 -0.035 -0.666 -0.487 0.365 
x2 -0.035 1.000 0.041 0.729 -0.547 
x3 -0.666 0.041 1.000 0.367 -0.275 
x4 -0.487 0.729 0.367 1.000 -0.700 
x5 0.365 -0.547 -0.275 -0.700 1.000 
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This correlation matrix is assumed known and appropriate partitions are used in (3-4) and 

(3-5) to determine the correct mean vector and covariance matrix used to calculate the 

non-centrality parameter in (3-3) used to compute the shift condition ARL. 

The raw data from Duncan (with variable numbers re-labelled to Hawkins 

convention) is: 

Piece # Fiber Fineness Fiber Length Fiber Tensile Strength Skein Strength 
(0.1 Micrograms/Inch) (0.01 Inch) (1,000 PSI) (Pounds) 

Xi x2 x3 x4 
1 44 85 76 99 
2 42 82 78 93 
3 42 75 73 99 
4 44 74 72 97 
5 43 76 73 90 
6 46 74 69 96 
7 46 73 69 93 
8 36 96 80 130 
9 36 93 78 118 
10 37 70 73 88 
11 46 82 71 89 
12 45 80 72 93 
13 42 77 76 94 
14 50 67 76 75 
15 48 82 70 84 
16 41 76 76 91 
17 31 74 78 100 
18 29 71 80 98 
19 39 70 83 101 
20 38 64 79 80 



APPENDIX 3.C 

Calculation of Non-Centrality Parameters and Shift Distances 
(MathCad3 ° Objects) 
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Sig 

1 -0.035 -0.666 -0.487 0.365 

-0.035  1 0.041 0.729 -0.547 

-0.666 0.041   1 0.367 -0.275 

-0.487 0.729 0.367   1 -0.7 

0.365 -0.547 -0.275 -0.7   1 

Correlation Matrix 

Sigll := 

Sig21 := 

1 -0.035 -0.666 

-0.035       1 0.041 

-0.666 0.041       1 

-0.487 0.729 0.367 

0.365 -0.547 -0.275 

Sigl2 

Sig22 

-0.487 0.365 

0.729 -0.547 

0.367   -0.275 

1     -0.7 

-0.7     1 

Partitioned 
Correlation 
Matrix 

Sig2_l := Sig22-[sig21-Sigll 1-Sigl2_ 

0.254 -0.14 

-0.14     0.58 
Sig2_l 

Conditional Co variance Matrix 
For Second Group 

Shift Distances and Non-centrality Parameters: 

Case 1 {Joint Procedure}: 

muU2 := 
-1 

Shift in U2 Mean. 

lamda2U2 := muU2T-Sig2_f 1-muU2 

lamda2U2 = 4.34 
Non-centralily parameter 
(I am da-squared) for U2. 

lamdaU2 := «}4M 

lamdaU2 = 2.083 U2 Shift Distance, lamda. 



Case 1 {Traditional} 
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mux := Shift, in Mean ofX. 

T      -1 
hmda2X := mux   ■ Sig   -mux 

lamda2X = 4.34 
N o n-ce ntrality p ararn ete r 
(I am da-squared). 

lamdaX := ^4.34 

lamdaX = 2.083 Shift Distance, lam da. 

Case 1 {Joint Procedure; X4-X5 Void}: 

muU2 := Shift in U2 Mean 

lamda2U2 := muU2T-Sig2_f1-muU2 

kmda2U2 = 8.738 
No n-ce ntrality parameter 
(I am da-squared). 

lamdaU2 := ^8738 

lamdaU2 = 2.956 Shift Distance, lamda 
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Case 1 {Traditional; X4-X5 Void}: 

mux 

-1 

T       -1 
lamda2X := mux  -Sig   -mux 

lamda2X = 8738 

lamdaX := ^3738 

lamdaX = 2.956 

Shift in Mean of X 

Non-centrality parameter 
(lamda-squared). 

Shift Distance.. I am da 

Case 2 {Joint Procedure}: 

1 

muUl :=   -1 

-1 

Shift in U1 Mean 

lamda2Ul := muUlT-Sigll ^muUl 

lamda2Ul = 2.113 
Non-centrality parameter 
(lamda-squared). 

lamdaUl := ^Tl3 

lamdaUl = 1.^54 
Shift Distance, I am da 



^ase 2 {Traditional}: 
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mux := 

1 

-1 

-1 

-1.192 

0.893 

Shift in Mean ofX 

T      -1 
lamda2X := mux  -Sig   -mux 

lamda2X - 2.113 
Non-centrality parameter 
(I am da-squared). 

lamdaX := -Jim 

lamdaX = 1.154 Shift Distance, larnda 

Case 3 {Traditional}: 

mux := 

1 

-1 

-1 

-2.192 

1.893 

Shift in Mean ofX 

T      -l 
lamda2X := mux   -Sig   -mux 

lamda2X = 6.451 
Non-centrality parameter 
(I am da-squared). 

lamdaX := Js^sl 

lamdaX = 2.54 Shift Distance, I am da 
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APPENDIX 3.D 

Computation of Probabilities Under 
Non-Central Chi-Square Distribution 

SAS Code 

data 
pi = 
P2 = 
P3 = 
p4 = 
p5 = 
proc 
run; 

chi; 
probchi (11.98,2,4.34) ; 
probchi(16.75,5,4.34) ; 
probchi(14.32,3,2.113) 
probchi(16.75,5,2.113) 
probchi(16.75,5,6.451) 
print data = chi; 

/* Case 1, U2 */ 
/* Case 1, Traditional */ 
/* Case 2, Ul */ 
/* Case 2, Traditional */ 
/* Case 3, Traditional */ 

OBS 

1 

SAS Output Listing 

The   SAS   System 

PI P2 P3 P4 P5 

0.88287     0.90822     0.97196     0.96765     0.82420 

SAS Code 

data   chi; 
P0 = probchi(11.98,2,8.738); 
PI = probchi(16.75,5,8.738); 
proc  print   data   =   chi; 
run; 

/* Case 1, U2, X4-X5 Void   */ 
/* Case 1, Trad., X4-X5 Void */ 

SAS Output Listing 

The SAS System 

OBS 

1 

P0 

0.6354! 

PI 

0.71158 
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APPENDIX 3.E 

Principal Components Analysis (PCA) of Cotton Fiber Data 

SAS Code 

options   Is   =  78; 
title   "Principal   Components  Analysis   of  Cotton  Fiber   Data' 

data cotton(type=corr); 
infile cards missover; 
type ='corr'; 

input _name_ $ xl x2 x3 x4 x5; 
cards; 

xl 1.000 
x2 -0.035 1.000 
x3 -0.666 0.041 1.000 
x4 -0.487 0.729 0.367 1.000 
x5 0.365 -0.547 -0.275 -0.700 1.000 

proc  print   clata^cotton; 

proc princomp cov data=cotton; 
var xl x2 x3 x4 x5; 

run; 

SAS Output Listing 

Principal Components Analysis of Cotton Fiber Data 

OBS TYPE NAME XI X2 X3 X4 X5 

1 corr xl 1.000 
2 corr x2 -0.035 1.000 
3 corr x3 -0.666 0.041 1.000 
4 corr x4 -0.487 0.729 0.367 1.0 
5 corr x5 0.365 -0.547 -0.275 -0.7 
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Principal Components Analysis of Cotton Fiber Data 

Principal Component Analysis 

10000 Observations 
5 Variables 

Total Variance = 5 

Eigenvalues of the Covariance Matrix 

Eigenvalue Difference Proportion Cumulative 

PRIN1 2.74064 1.37036 0.548127 0.54813 
PRIN2 1.37028 0.94800 0.274055 0.82218 
PRIN3 0.42228 0.08980 0.084455 0.90664 
PRIN4 0.33247 0.19813 0.066495 0.97313 
PRIN5 0.13434 0.026868 1.00000 

Eigenvectors 

PRIN1 PRIN2         PRIN3 PRIN4 PRIN5 

XI   -.402885 0.539649 0.168018 0.613428 0.376746 
X2   0.402673 0.549622 0.491714 -.020977 -.541800 
X3   0.357925 -.575535 0.415586 0.605516 0.035894 
X4   0.554037 0.185275 0.144552 -.294608 0.742312 
X5   -.490379 -.202799 0.732380 -.412095 0.110450 



APPENDIX 3.F 

ARL Calculations for Level of Grouping Comparison (Table 3-4) 

Six (6) groups of two (2) variables each: 

SAS Code 

data chi; 
ARLO = 1/(l-(probchi(14.175975,2,0))**6); 
ARL05 = 1/(l-{.999164925**5)*(probchi(14.175975,2,0.25))) 
ARL1 = 1/(l-(.999164925**5)*(probchi(14.175975,2,1))); 
ARL15 = 1/(1-(.999164925**5)*(probchi (14.175975,2,2.25) ) ) 
ARL2 = l/(l-(.999164925**5)* (probchi(14.175975,2,4) )); 
ARL25 = 1/(l-(.999164925**5)* (probchi(14.175975,2,6.25) ) ) 
ARL3 = 1/ (l-(.999164925**5)*(probchi(14.175975,2,9))) ; 
proc print data = chi; 
run; 

SAS Output Listing 

The SAS System 

OBS   ARLO    ARL05    ARL1    ARL15    ARL2    ARL25    ARL3 
1  200.000 170.698 99.1039 41.7232 16.4591 7.18468 3.66950 

Four (4) groups of three (3) variables each: 

SAS Code 

data chi; 
ARLO = 1/(l-(probchi(15.78961,3,0)**4) ) ; 
ARL05 = 1/(1-(.99874765**3)*(probchi(15.78961,3, .25))) ; 
ARL1 = l/(l-(.99874765**3)*(probchi(15.78961,3,1))); 
ARL15 = l/(l-(.99874765**3)*(probchi(15.78961,3,2.25))); 
ARL2 = 1/(1-(.99874765**3)*(probchi(15.78961,3,4) )) ; 
ARL25  = 1/ (l-(.99874765**3)* (probchi(15.78961,3,6.25))); 
ARL3   = 1/(l-(.99874765**3)*(probchi(15.78961,3,9))); 
proc print data = chi; 
run; 

SAS Output Listing 

The SAS System 

OBS   ARLO    ARL05    ARL1    ARL15    ARL2    ARL25    ARL3 
1  200.000 169.996 100.057 43.7712 17.7885 7.84566 3.98834 
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Three (3) groups of four (4) variables each: 

SAS Code 

data chi; 
ARLO = l/(l-(probchi(17.32726,4,0)**3)); 
ARL05 = 1/(l-(.99833055**2)*(probchi(17.32726,4,.25))); 
ARL1 = 1/(l-(.99833055**2)*(probchi(17.32726,4,1))); 
ARL15 = l/(l-(.99833055**2)*(probchi(17.32726,4,2.25))); 
ARL2 = 1/(l-{.99833055**2)*(probchi(17.32726,4,4))); 
ARL25  = 1/(l-(.99833055**2)*(probchi(17.32726,4,6.25))); 
ARL3   = 1/ (l-(.99833055**2)*(probchi(17.32726,4,9))); 
proc print data = chi; 
run; 

SAS Output Listing 

The SAS System 

OBS   ARLO    ARL05    ARL1    ARL15    ARL2    ARL25    ARL3 
1   200.000 169.316 100.510 45.2874 18.8921 8.42874  4.2791 

Two (2) groups of six (6) variables each: 

SAS Code 

data chi; 
ARLO = 1/ (l-(probchi(20.24635,6,0)**2)); 
ARL05 = l/(l-(.99749687)*(probchi(20.24635,6, .25))) ; 
ARL1 = 1/ (l-(.99749687)*(probchi(20.24635,6,1) )) ; 
ARL15 = l/(l-(.99749687)*(probchi(20.24635,6,2.25))); 
ARL2 = l/(l-(.99749687)*(probchi(20.24635,6,4))); 
ARL25  = l/(l-(.99749687)*(probchi{20.24635,6,6.25))) 
ARL3   = 1/ (l-(.99749687)*(probchi(20.24635,6,9) )) ; 
proc print data = chi; 
run; 

SAS Output Listing 

The SAS System 

OBS   ARLO   ARL05   ARL1   ARL15   ARL2   ARL25   ARL3 
1   200.000 168.053 100.645 47.3185 20.6141 9.41595  4.794£ 



CHAPTER 4 

MULTIVARIATE STATISTICAL PROCESS MONITORING 
rNVOLVING NON-NORMAL DATA 

Introduction 

The form of many variables control chart statistics and their calculated Average 

Run Length performance depends on assumptions that the variables of interest are 

normally distributed. While attributes control charts deal explicitly with non-normality 

by using appropriate distributions (binomial for fraction defective, exponential for time 

between events, etc.), variables control charts used in the presence of non-normality 

mostly rely on the use of batch means with an appeal to the Central Limit Theorem. 

When process run times are long, some economy is lost in doing this since several 

observations must be taken from the process before a single point on the control chart is 

realized. 

Without batching, regression adjustment techniques on individual observations in 

the presence of non-normality face additional problems since the non-normality may 

adversely affect model fit in addition to its impact on the chart used to monitor the 

residuals. 

This chapter presents a semi-conductor manufacturing scenario that seems well- 

suited to monitoring with regression adjusted variables, but assumptions of normality are 

violated. Rather than batching observations to obtain normality, the use of Generalized 

Linear Models (GLM) theory (first published by Neider and Wedderburn, 1972) to 

explicitly deal with the non-normality is explored. 
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Background 

Control charts are often classified into two types: 1) Variables Control Charts 

when the quality characteristic of interest may be expressed as a number on a continuous 

scale; and 2) Attributes Control Charts when the characteristic is discrete (e.g. number of 

defects), or non-quantitative (e.g. conforming/non-conforming) (Montgomery, 1991). 

Design of Variables Control Charts typically rely heavily on normal distribution theory. 

A Shewhart chart on individual observations typically uses control limits at ± 3-sigma 

symmetrically about the mean. An x chart also typically uses ± 3-standard error limits 

symmetrically about the mean. Under the normal distribution, the probability of a point 

lying outside these limits is 0.0027. Hence, the in control Average Run Length (ARL) of 

these charts is 1/0.0027 « 370 observations. 

CUSUM procedures are based on sequential probability ratio tests that for many 

common distributions reduce to calculating cumulative sums (Healy, 1987). The ARL 

performance of Variables Control Chart CUSUMs is generally determined by the 

Markov-chain based approach proposed by Brook and Evans (1972), who recommended 

"discretizing" the normal distribution by dividing it into intervals and forming discrete 

state-transition probabilities across these intervals. ARL performance for Fast Initial 

Response (FIR) procedures (basically giving the CUSUM a headstart towards its control 

limit) and for robust procedures (such as requiring two in a row above the control limit) 

have been calculated by assessing the net effect of the modification on the state transition 

probabilities. While ARL performance for Attributes CUSUMs have been calculated by 
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using the appropriate distribution to determine state-transition probabilities (binomial for 

fraction defective, exponential for time between events, etc.), ARL performance 

calculations for Variables CUSUMs are primarily based on assumptions of normality. 

When the underlying distribution is unknown (or known to be non-normal), using batch 

means and appealing to the central limit theorem often satisfies the normality assumption. 

When process run times are long, some economy is lost in doing this, since several 

independent observations must be taken from the process before a single point on the 

control chart is realized. 

ARL results for Exponentially-Weighted Moving Average (EWMA) charts 

published by Lucas and Sacucci (1990) also rely on Markov chain methods applied to a 

discretized normal distribution, though Montgomery (1991) stated that the EWMA is 

insensitive to the normality assumption since it may be viewed as a weighted average of 

all past and current observations. 

In Multivariate Statistical Process Monitoring, Hotelling's T2 statistic is derived 

using assumptions of p-variate normality. Healy's (1987) MCUSUM procedure reduces 

to a univariate CUSUM, with the implication that univariate variable CUSUM chart 

performance predictions (which are based on normal distribution theory) may be used. 

Methods compared in Pignatiello and Runger (1990) either: 1) use the result that ARL 

performance is determined solely by the statistical distance of the shift and use the Non- 

Central Chi-Square distribution to calculate ARLs; or 2) simulate ARL performance 

using multi-normal variates when the assumption in 1) is not met. Use of the Non- 
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Central Chi-Square distribution implies assumptions that the quality characteristics of 

interest are normally distributed. 

The Chi-Square Distribution is used to model a random variable that is a quadratic 

form of normally distributed, standardized random variables such that (Hines and 

Montgomery, 1980): 

X2 = Z2+Z2+...+Z2
p (4-1) 

The Non-Central Chi-Square distribution models similar quadratic forms where 

one or more of the means of the normally distributed random variables have a constant 

added such that their expected values are no longer zero (Tiku, 1985): 

X'2=£(Z1+a,)2 (4-2) 
1=1 

Thus we see that ARL calculations based on the Non-Central Chi-Square distribution 

have incorporated assumptions of normality. 

While univariate EWMAs are insensitive to the normality assumption, the 

MEWMA (Lowry, et. al, 1992) uses the Hotelling T2 on simultaneous univariate 

EWMAs, with its accompanying normality assumptions. Departures from this 

assumption are considered minimal since the individual EWMAs are weighted averages, 

although this has not been explored for severe departures of normality in the underlying 

distributions of the individual EWMAs, or for higher values of smoothing constants that 

reduce the amount of averaging taking place by placing greater emphasis on the most 

recent observation. 
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Chapters 2 and 3 highlighted scenarios in which monitoring regression adjusted 

variables tends to "magnify" a shift under conditions where the usual relationship 

between variables is violated after an assignable cause occurs. The regression adjustment 

techniques published to date have assumed that the quality characteristics of interest are 

normally distributed with constant variance so that models fit using Ordinary Least 

Squares (OLS) are appropriate. Montgomery and Peck (1992) summarized problems 

associated with departures from these assumptions: 

Although small departures from normality do not affect the model 
greatly, gross nonnormality is potentially more serious as the t- or 
F-statistics, and confidence and prediction intervals depend on the 
normality assumption. Furthermore if the errors come from a distribution 
with thicker or heavier tails than the normal, least squares fit may be 
sensitive to a small subset of the data. Heavy-tailed error distributions 
often generate outliers that "pull" the least squares fit too much in their 
direction." 

While data transformations (on y or x) are often used to reduce the degree to 

which these assumptions are violated, they do not always perform satisfactorily. Myers 

and Montgomery (1997) explored the analysis of two factorial experiments with non- 

normal response data, comparing transformation-based normal theory models to those 

using Generalized Linear Models (GLM) theory. In both cases, models generated using 

GLM theory provided substantially narrower confidence intervals around predicted values 

of the mean response. Furthermore, the transformation-based ordinary least squares 

(OLS) model for the defects response often provided negative estimates of the number of 

defects in an important region of interest. 
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The interest in this chapter is in determining if similar improvements may be 

obtained in regression adjustment monitoring methods through the use of GLM theory, 

when the usual assumptions of normality and constant variance are violated. The 

remainder of this chapter provides an overview of GLM theory and presents an industrial 

example of its application in a regression adjustment monitoring procedure. 

Generalized Linear Models 

Generalized Linear Models consist of three components: 1) a random component; 

2) a systematic component; and 3) a link between the random and systematic components. 

The random component has a distribution in the exponential family of the form 

(McCullagh and Neider, 1983): 

fY (y;0,<|>) = exp{(ye - b(G)) / a(<|>) + c(y,<|>)} (4-3) 

where a( ), b( ), and c( ) are specific functions (pieces) of an original distribution that 

allow the original distribution to be specified in this form. These functions are such that 

a((j>) = (j)/w and c = c(y, <j)/w) where w is a "known" weight for each observation (in 

parameter estimation, SAS PROC GENMOD starts with all weights = 1). The Normal, 

Binomial, Poisson, Gamma, and Inverse Gaussian are examples of distributions that can 

be expressed in the form of (4-3), and are available for use in SAS PROC GENMOD. 

Neider and McCullagh's (1983) Table 2.1 contains expressions for a( ), b( ), and c( ) 

that allow these distributions to be expressed in exponential form (4-3). This differs from 

traditional linear models where the random component is assumed to be normally 
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distributed; however traditional linear models may be represented in this generalized 

form. 

The systematic component is a linear predictor, r\, given by: 

*1=X   xjßj (4-4) 
J=I 

where xi, xj,..., xp is a set of regressor variables, and ßi, ß2,..., ßj are coefficients 

determined by Maximum Likelihood Estimation (using log likelihood functions). This 

systematic component is in the same form as in traditional linear models. 

The link component is used to describe how the expected value of the random 

component is related to the linear predictor (systematic component). This may be any 

mono tonic differentiable function that correctly relates the two components. As an 

example, the expected value of a binomial distribution lies between 0 and 1, so a link 

function should map the interval (0,1) to the whole real line (McCullagh and Neider, 

1983). In the form of expression (4-3), 6 is defined as the canonical parameter. When 

the systematic effects are additive on the scale produced by the link, then 9 = r\, and the 

link that accomplishes this is called the canonical link. While it is not mandatory to use a 

canonical link, they often make the most sense and are convenient (McCullagh and 

Neider, 1983). 

In classical linear models, the random component is normal, and the link function 

is the identity function (the expected value of the random component is linearly related to 

the systematic component). 
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Using a canonical link, 

e = Tj=  X   Xjßj , (4-5) 
J=l 

so the unknown parameters of (4-3) and (4-4) are the ßj and Wj. Estimation of these 

parameters is accomplished by Iteratively Re-weighted Least Squares (IRLS). This 

iterative procedure is used to update estimates of these parameters until an objective 

function called the "Deviance" is minimized. The Deviance is given by 

D(y;n) = 2<|>[L(y;y)-L(n;y)] (4-6) 

where L(y;y) is the maximum log-likelihood achievable for an unrestricted model and 

L(u.;y) is the maximum log-likelihood achievable for the parameter estimates applied to 

the candidate set of regressor variables specified in (restricted to) the model. Because 

L(y;y) does not depend on the parameters, maximizing L(|j.;y) is equivalent to minimizing 

D(y;n) (McCullagh and Neider, 1983). 

Additional details on parameter estimation and goodness of fit testing using S AS 

PROC GENMOD can be found in SAS Technical Report P-243 and in Myers and 

Montgomery (1997). Procedures involving residual plots to detect non-linearity in 

Generalized Linear Models were compared in Wang (1987). Williams (1987) presented 

influence diagnostics based on changes in the deviance due to single case deletions. 

Pregibon (1980) provided tests for assessing the adequacy of the chosen link function 

(assuming that the error distribution and systematic component variables have been 

adequately selected). 
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The primary method used here to compare candidate models will be the difference 

in Deviance (normal theory models may also be estimated in the GLM framework so that 

Deviances may be compared). Observed standard error and ranges of the raw residuals 

are also compared, as are the length of prediction intervals on future observations. 

Example 

Consider a process in which a layer of material is deposited on a semiconductor 

wafer by injecting a gas into a furnace containing the wafer. Primary methods of 

controlling the thickness of this layer include: 1) time in the furnace; 2) temperature of 

the furnace; 3) gas concentration; and 4) gas flow rate. 

At the conclusion of a process run, measurements are taken on two variables of 

interest, sheet resistivity and layer thickness. For a given material, their is usually some 

function of an inverse relationship between the surface area of the conducting material, 

and its electrical resistance. Although this is non-linear over a large range, the amount of 

curvature shown over a more narrow control region may be reasonably linear (though 

quadratic terms could be easily added to a model if required). A plot of resistivity versus 

thickness for the process under consideration is in Figure 4-1 (note: the four clustered 

points identified as "A" are far enough away from the rest of the data and the apparent 

slope that they are considered outliers and are ignored for model fitting purposes, but will 

be used to see if the resulting control method detects these points). 
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Figure 4-1. Sheet resistivity versus layer thickness. 

Sheet resistivity is determined by setting the layer thickness which is controlled 

using factors mentioned above. If thickness alone were monitored, it is possible that 

contamination may change the conductance properties of the material even though the 

surface area remained on target. It is also possible that the thickness measure itself may 

not adequately reflect surface area available for conductance when there are substantial 

physical irregularities in the layer. Monitoring sheet resistivity alone may not provide 

enough information with respect to assignable cause when it is off-target. Did the 

"recipe" simply fail to achieve the intended thickness, or must further investigation be 

conducted to detect contamination? 

Though these variables are both measured after a single step, they may be 

considered as "cascading" ~ under normal operating conditions, thickness determines 

sheet resistivity. Considering this as well as the strong relationship between the measures 

(r = -.77 ), this scenario is well-suited to monitoring with regression adjusted variables as 
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proposed by Hawkins (1993). Following this approach, thickness would be monitored 

using a univariate chart, and the residuals from a regression of resistivity on thickness 

would be monitored with a second univariate chart. A shift in thickness will show up in 

the former chart, but since the physical relationship between resistivity and thickness is 

maintained, residuals in the latter chart will remain small. A contamination problem 

would not show up in the former chart when thickness is correctly maintained, but 

residuals in the latter chart will be larger as the contamination changes the relationship 

between the variables. 

As previously mentioned, OLS regression requires that the model errors are 

independent, and normally distributed with zero mean and constant variance. 

Figure 4-2 is a normal probability plot of the standardized residuals from a least-squares 

regression of resistivity on thickness. The long "right-tail" in this plot is evidence of non- 

normality. 

Normal Probability Plot 
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Figure 4-2. Normal probability plot of residuals from 
resistivity regressed on thickness. 
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Figure 4-3 contains a plot of the standardized residuals versus the level of the 

predicted value, showing a slight tendency of increased spread as the level of the 

predicted value increases, indicating a potential problem with the constant variance 

assumption (at least early in the plot). 

Figure 4-4 presents a graphical autocorrelation function which suggests that the 

residuals are not independent. 

Figure 4-3. Standardized residuals versus predicted values. 
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3    0.24    2.44     59.03           10    0.04    0.30   110.01           17 0.00    0.00   122.99 
4    011     1.11      61.23           11     0.09    0.78   111.54           18 0.10    0.80   124.79 

5    0.18    1.78     67.01           12    0.12    1.00   114.06           19 0.09    0.74   126.35 
6    0.27    2.58     79.62           13    0.10    0.80   115.72          20 0.09    0.73   127.89 
7    0.35    3.17   100.42           14    0.17    1.36   120.61 

Figure 4-4. Autocorrelation Function of standardized residuals. 
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While GLM theory does not rely on assumptions of normality and constant variance, it 

does make the assumption that observations are independent with respect to time. 

Violation of this assumption shown in Figure 4-4 will be initially ignored, to be discussed 

later in this chapter. 

For comparison purposes, a suitable transformation must be selected. To reduce 

the skewness and stabilize variance, the natural log transformation was considered. The 

plots in Figures 4-5 and 4-6 show that normality and constant variance assumptions 

appear to be met. 

Within SAS PROC GENMOD, positively skewed distributions may be modeled 

with the GAMMA error distribution with the inverse link being the canonical link. 

The three fitted models are (first two OLS and last one GLM using GENMOD): 

Resistivity = 4.615- 0.000869 x Thickness (4-6) 

ln(Resistivity) = 1.583 - 0.000257 x Thickness (4-7) 

Resistivity =  (4-8) 
0.1870 +0.0001 x Thickness 

The positive coefficient on thickness in (4-8) may seem confusing at first — increasing 

thickness usually lowers resistivity. Since the inverse link is being used, the inverse of a 

smaller number is larger, so (4-8) does indeed operate correctly even though the sign of 

the coefficient is reversed from that of the other two models. 
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Normal Probability Plot 
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Figure 4-5. Normal probability plot of residuals from 
OLS regression of ln(resistivity) on thickness. 

Figure 4-6. Residuals versus predicted values from 
OLS regression of ln(resistivity) on thickness. 
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The summary statistics in Table 4-1 show a small, but consistent improvement across the 

fitting methods, [note: the "deviance" number in Table 4-1 for the normal-theory-based 

models actually comes from a GENMOD fit using the normal distribution with the 

identity link, shown by Neider and Wedderburn (1972) to be identical to least-squares 

estimation. For other comparisons to come, the least-squares procedure in PROC REG is 

used since the prediction intervals are more readily available]. While the improvement in 

Table 4-1 is admittedly small, we must recall that the departure from least-squares 

assumptions was not severe in the available data set. 

Since the intended application is process monitoring, the prediction intervals are 

of considerable interest as they may be used as control limits. Myers and Montgomery 

(1997) show that an asymptotic, normal-theory prediction interval on a future observation 

(assuming the canonical link is used) is given by: 

—! 1/2 
Var(y0) 

l^(x;ß) + za/ 
r((t>) 

1 + Var(y0) ,, (X'VX)- 
k°     [r(«0] 

(4-9) 

Though not available directly in SAS PROC GENMOD, these values may be calculated 

from other output items available. 

Table 4-1. Summary statistics for fitted models. 

Measure OLS 

OLS 
Natural Log 

Transformation 

GenMod 
Gamma Error 
Inverse Link 

Deviance .3561 .0314 .0313 
Raw Residual SSE .3561 .3537 .3514 
Raw Residual Range .2165 .2153 .2143 
Raw Residual Std Error .0470 .0469 .0467 
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For the Gamma distribution with the inverse canonical link: 

£Kß) = l/(x;ß); (4-10) 

which is the inverse of the linear predictor. The linear predictors are available using the 

OB STATS option and are printed under the heading "Xbeta." The scale parameter, r((j>), 

is listed as the SCALE parameter under the Analysis of Parameter Estimates. For the 

Gamma distribution, the variance function is: 

1 
V(y0) = u/ = (4-11) 

,xoß. 

What remains is to calculate the term in brackets underneath the radical of eqn (4-9). 

With the OBSTATS option, SAS PROC GENMOD includes a quantity called "Std," 

which is the standard error of the linear predictor. The variance of the linear predictor is 

given in SAS Tech Report P-243 as: 

a2
x=x;Sx, (4-12) 

where E is the covariance of the parameter estimates, ß . Myers and Montgomery (1997) 

note the covariance matrix of the parameter estimates is: 

~      fX'VXr' Var(ß) = L J_ (4_13) 

[r(40] 

Substituting (4-13) into (4-12) we see that squaring "Std" and multiplying by the scale 

parameter provides the quantity in the brackets underneath the radical in eqn (4-9). 



85 

This approach was used to form 95% prediction intervals on future observations 

for comparison between models [note: instead of za/2, ta/2 n_p was used in (4-9) to be 

consistent with SAS PROC REG for least-squares 95% prediction intervals - the 

difference is small, but gets magnified in the links and inverse transformations being 

applied]. 

Table 4-2 contains a 95% prediction interval length comparison across the three 

models for the first ten observations. These points are reasonably illustrative as they 

contain a wide range of resistivity levels. The average prediction interval length for all 

162 observations is presented at the bottom of Table 4-2. In general, the interval using 

the GenMod fit is slightly narrower than the others, with the transformation-based OLS 

intervals being slightly narrower than the OLS intervals on the raw data. An exception to 

this occurs at higher levels of resistivity (points 9 and 10) where the OLS intervals on the 

Table 4-2. Prediction interval length comparison. 
Least Squares Fit GenMod Fit 

Ln Transformation Gamma Error 
No Transformation (Untransformed) Inverse Link 

Observed Predicted 95% PI Predicted 95% PI Predicted 95% PI 
Obs Value Value Width Value Width Value Width 

1 3.302 3.2260 0.1897 3.2284 0.1821 3.2308 0.1804 
2 3.298 3.2199 0.1900 3.2226 0.1818 3.2252 0.1803 
3 3.361 3.3024 0.1873 3.3026 0.1840 3.3027 0.1823 
4 3.402 3.2772 0.1879 3.2779 0.1829 3.2786 0.1815 
5 3.205 3.2129 0.1903 3.2162 0.1817 3.2188 0.1803 
6 3.347 3.2512 0.1887 3.2527 0.1825 3.2541 0.1809 
7 3.335 3.2112 0.1904 3.2146 0.1816 3.2172 0.1803 
8 3.252 3.1947 0.1913 3.1989 0.1817 3.2022 0.1801 
9 3.496 3.5553 0.1943 3.5591 0.2054 3.5652 0.2048 

10 3.408 3.4875 0.1902 3.4882 0.1971 3.4908 0.1958 
Average 
(162 Obs) 0.1875 0.1867 0.1852 



86 

raw data are narrower. 

This may seem undesirable at first; however, we must consider that the data 

indicated a tendency for resistivity to exhibit more variability at higher levels. It is 

appropriate that prediction intervals on data that exhibit non-constant variance should be 

a function of the variance. Figure 4-7 plots the 95% prediction interval length versus the 

level of the predicted resistivity (GLM predicted values) for all three models (values from 

the ln(resistivity) model have been untransformed). This figure shows that the GLM 

model and the transformation-based OLS model vary the interval length more as a 

function of variance at the level of the predicted value (with the GLM width slightly 

narrower), and that the OLS model interval length varies solely as a function of the 

distance from the center of the data. 

This feature should be considered desirable for process monitoring of data with 

non-constant variance - intervals that assume constant variance and are tighter than they 

0.21 

3.2 3.3 3.4 3.5 

Predicted Resistivity 

3.6 

Figure 4-7. 95% prediction interval length versus predicted resistivity. 
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should be in regions of naturally higher variability would lead to increased incidence of 

false alarms. 

Plots of observed values versus the prediction intervals are in Figures 4-8 and 4-9 

for the transformation-based OLS and GLM fits, respectively. Both models indicate that 

points 4, 6, 7, 13, 34, 78 are suspect; however, even though the noted improvements in 

prediction intervals seem to be small, the slightly tighter interval from the GLM fit 

indicates an additional suspect point associated with run 66. 

Point 13 in Figures 4-8 and 4-9 calls into question an assumption made when 

fitting the models in equations (4-6) through (4-8). Second-order terms were considered 

and found to be marginally statistically significant to varying degrees across the models. 

Since including these terms only improved the deviance by 2-3%, and because the plot in 

Figure 4-1 looks largely linear, the decision was made not to include the second order 
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Figure 4-8. 95% Prediction intervals from OLS ln(resistivity) model. 
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Figure 4-9. 95% Prediction interval from Generalized Linear Model. 

term. Another factor supporting this decision is that multivariate statistical techniques 

that rely on the covariance matrix are only considering linear relationships between 

variables. 

Knowing that the relationship between resistivity and thickness should appear 

more non-linear over a larger range of exploration and re-calling the marginal statistical 

significance of second order model terms, we should consider whether point 13 may have 

been "penalized" by considering only the linear relationship. This is mitigated somewhat 

by the natural log transformation in model (4-7) and the inverse link function in model 

model (4-8). Figure 4-10 shows the observed resistivity versus the 95% prediction limits 

based on a generalized linear model incorporating a second-order linear predictor. Points 

6 and 13 are no longer outside the prediction limits. The second order model seems to 

work quite well over the range of the plot (the average 95% prediction interval width is 

reduced to 0.1836). None of the remaining points is very far outside the prediction limits. 
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Figure 4-10. 95% prediction limits for Generalized Linear Model 
including second order linear predictor. 

If these products were well-within specification tolerances, then the prediction intervals 

could be increased to higher percentages. Figure 4-11 shows 99% prediction intervals, 

with all points contained therein. The cluster of four points labeled A in Figure 4-1 still 

falls outside the prediction limits as annotated by the area A in Figure 4-11. 

Trends over time are difficult to see in Figures 4-8 through 4-11. Plotting 

resistivity and its prediction limits in run order offer additional insight (Figure 4-12), 

although not as much as in traditional charting since the prediction limits vary with 

respect to the observed thickness [note: to reduce clutter, only the first 40 observations 

are shown in Figure 12]. The simultaneous application of a univariate chart on thickness, 

and a prediction limit chart on resistivity could be incorporated into a single graph by 

placing the univariate control limits for thickness as vertical lines on Figures 4-8 through 

4-11. 
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Autocorrelation 

Figure 4-4 showed the presence of moderate autocorrelation in the data. For OLS, 

the mean square error could be underestimated (Montgomery and Peck, 1992). While 

this probably has not led to wrong conclusions regarding regressor significance (only one 

is considered in this example scenario), it may be lead to the production of prediction 

limits that are misleadingly narrow. GLM also assumes independence with respect to 

time. When this is violated, the variance of the linear predictor would be underestimated, 

which in turn would lead to the production of misleadingly narrow prediction limits. This 

would lead to an increased false alarm rate ~ analogous to results found by Harris and 

Ross (1991) for the univariate case. 

Other Considerations 

When more frequent observations are available, it may be better to give up the 

prediction limit charts of individual observations and use a CUSUM on averaged 

residuals (still not normally distributed), or an EWMA on the residuals. Despite the 

improved model fit using GLM, deviance residuals were still non-normal indicating a 

lack of asymptotic conditions shown by Pierce & Schaefer (1986). The raw residuals also 

remained non-normal as expected. Even so, the residual standard deviation is smaller 

with the GLM fit, and Hawkins has shown (assuming a reasonable relationship exists 

between variables) that the residual standard deviation is smaller than in the original 

units. Since the shift in the mean is equivalent on either scale, the shift is magnified as a 
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function of its residual standard error. The key remaining assumption for performance 

improvements from regression adjustment is that the usual relationship between variables 

is violated. The univariate chart on thickness would detect the situation that the residual- 

based chart on resistivity would not -- when thickness and resistivity move together along 

their normal relationship. 

Summary and Conclusions 

Assumptions of normality and constant variance are imbedded in many statistical 

monitoring procedures. While an appeal may be made to the central limit theorem so that 

batch means may be considered normally distributed, when process run times are long, it 

may not be practical to wait for several observations before obtaining a single batch mean 

control chart point. 

For scenarios where monitoring with regression adjusted variables is appropriate, 

but assumptions of normality and constant variance are violated, prediction limits based 

on generalized linear model theory were shown to offer tighter control than OLS based 

methods relying on a data transformation. Though the improvements appeared small, the 

example is considered very conservative as the departure from these assumptions was 

minor, and the model was fit with process data thought to be in a reasonable state of 

control. Montgomery and Myers (1997) have shown larger improvements with GLM 

fitting under more severe departures from assumptions, with response data involving 

larger exploratory ranges. 

Furthermore, under conditions of non-constant variance in the variable of interest, 

the concept that prediction limits should vary with the level of the predicted value was 
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emphasized, otherwise unnecessary false alarms in regions of naturally higher variability 

would occur. Both the transformation-based OLS and the GLM models were shown to 

possess this property, with the GLM model exhibiting tighter intervals. Finally, the 

example also demonstrated regression adjustment's flexibility to consider non-linear 

relationships between variables within the monitoring procedure. 



APPENDIX 4.A 

Supporting Data for Ordinary Least Squares Model 

OLS Model Summary 

OLS Fit to Resistivity/Thickness Data 

Model: MODEL1 
Dependent Variable: RESIST 

Analysis of Variance 

Source DF 
Sum of 
Squares 

Mean 
Square F Value Prob>F 

Model 
Error 
C Total 

1 
160 
161 

0.51502 
0.35615 
0.87117 

0.51502 
0.00223 

231.374 0.0001 

Root 
Dep 
C.V. 

MSE 
Mean 

0 
3 
1 

04718     R-s 
35159    Adj 
40768 

quare 
R-sq 

0 
0 

5912 
5886 

Parameter Estimates 

Parameter Standard T for HO: 
Variable DF Estimate Error Parameter=0 Prob > |T| 

INTERCEP 1 4.615285 0.08316033 55.499 0.0001 
THICK 1 -0.000869 0.00005712 -15.211 0.0001 

Variance 
Variable DF Inflation 

INTERCEP 1 0.00000000 
THICK 1 1.00000000 

Durbin-Watson D 1.079 
(For Number of Obs.) 162 
1st Order Autocorrelation   0.450 
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Data, Predicted Values, and 95% Prediction Intervals 

Dep Dep 
Var Predict L95% U95% Var Predict L95% U95% 

Obs Thick Res Value Predict Predict Obs Thick Res Value Predict Predict 

1 1599 3.302 3.2260 3.1311 3.3208 43 1436 3.345 3.3676 3.2741 3.4611 
2 1606 3.298 3.2199 3.1249 3.3149 44 1375 3.497 3.4206 3.3267 3.5145 
3 1511 3.361 3.3024 3.2088 3.3961 45 1392 3.456 3.4058 3.3121 3.4996 
4 1540 3.402 3.2772 3.1833 3.3712 46 1461 3.425 3.3459 3.2524 3.4393 
5 1614 3.205 3.2129 3.1178 3.3081 47 1446 3.444 3.3589 3.2654 3.4524 
6 1570 3.347 3.2512 3.1568 3.3455 48 1428 3.368 3.3745 3.2810 3.4681 
7 1616 3.335 3.2112 3.1160 3.3064 49 1435 3.425 3.3685 3.2750 3.4620 
8 1635 3.252 3.1947 3.0990 3.2903 50 1458 3.394 3.3485 3.2550 3.4419 
9 1220 3.496 3.5553 3.4581 3.6524 51 1460 3.347 3.3467 3.2533 3.4402 
10 1298 3.408 3.4875 3.3924 3.5826 52 1452 3.400 3.3537 3.2602 3.4472 
11 1269 3.502 3.5127 3.4169 3.6085 53 1421 3.430 3.3806 3.2871 3.4742 
12 1352 3.365 3.4406 3.3464 3.5348 54 1436 3.395 3.3676 3.2741 3.4611 
13 1260 3.640 3.5205 3.4245 3.6165 55 1528 3.273 3.2877 3.1938 3.3815 
14 1244 3.598 3.5344 3.4380 3.6308 56 1482 3.329 3.3276 3.2341 3.4211 
15 1252 3.608 3.5275 3.4313 3.6237 57 1493 3.317 3.3181 3.2245 3.4116 
16 1489 3.305 3.3215 3.2280 3.4151 58 1451 3.350 3.3546 3.2611 3.4480 
17 1506 3.258 3.3068 3.2131 3.4004 59 1457 3.370 3.3494 3.2559 3.4428 
18 1527 3.237 3.2885 3.1947 3.3824 60 1442 3.371 3.3624 3.2689 3.4559 
19 1501 3.223 3.3111 3.2175 3.4047 61 1410 3.432 3.3902 3.2966 3.4838 
20 1473 3.315 3.3354 3.2420 3.4289 62 1456 3.345 3.3502 3.2568 3.4437 
21 1548 3.341 3.2703 3.1762 3.3643 63 1474 3.340 3.3346 3.2411 3.4281 
22 1517 3.379 3.2972 3.2035 3.3909 64 1448 3.350 3.3572 3.2637 3.4506 
23 1522 3.231 3.2929 3.1991 3.3866 65 1491 3.313 3.3198 3.2263 3.4134 
24 1469 3.277 3.3389 3.2454 3.4324 66 1478 3.424 3.3311 3.2376 3.4246 

25 1513 3.232 3.3007 3.2070 3.3944 67 1416 3.431 3.3850 3.2914 3.4785 

26 1541 3.221 3.2764 3.1824 3.3703 68 1402 3.434 3.3971 3.3035 3.4908 
27 1542 3.268 3.2755 3.1815 3.3695 69 1491 3.320 3.3198 3.2263 3.4134 

28 1468 3.359 3.3398 3.2463 3.4333 70 1444 3.330 3.3606 3.2672 3.4541 
29 1406 3.396 3.3937 3.3000 3.4873 71 1486 3.305 3.3242 3.2306 3.4177 
30 1467 3.290 3.3407 3.2472 3.4341 72 1474 3.330 3.3346 3.2411 3.4281 
31 1468 3.375 3.3398 3.2463 3.4333 73 1442 3.380 3.3624 3.2689 3.4559 
32 1494 3.387 3.3172 3.2236 3.4108 74 1459 3.318 3.3476 3.2541 3.4411 

33 1410 3.452 3.3902 3.2966 3.4838 75 1459 3.400 3.3476 3.2541 3.4411 

34 1426 3.480 3.3763 3.2828 3.4698 76 1506 3.280 3.3068 3.2131 3.4004 

35 1500 3.350 3.3120 3.2184 3.4056 77 1467 3.326 3.3407 3.2472 3.4341 

36 1508 3.351 3.3050 3.2114 3.3987 78 1471 3.457 3.3372 3.2437 3.4307 

37 1437 3.442 3.3667 3.2732 3.4602 79 1495 3.300 3.3163 3.2228 3.4099 

38 1451 3.426 3.3546 3.2611 3.4480 80 1497 3.297 3.3146 3.2210 3.4082 

39 1476 3.376 3.3328 3.2393 3.4263 81 1444 3.394 3.3606 3.2672 3.4541 

40 1449 3.378 3.3563 3.2628 3.4498 82 1483 3.329 3.3268 3.2332 3.4203 
41 1452 3.394 3.3537 3.2602 3.4472 83 1420 3.305 3.3815 3.2880 3.4750 

42 1509 3.325 3.3042 3.2105 3.3978 84 1464 3.308 3.3433 3.2498 3.4367 
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Var Predict L95% U95% Var Predict L95% U95% 
Obs Thick Res Value Predict Predict Obs Thick Res Value Predict Predict 

85 1458 3.342 3.3485 3.2550 3.4419 127 1407 3.370 3.3928 3.2992 3.4864 
86 1453 3.327 3.3528 3.2594 3.4463 128 1479 3.285 3.3302 3.2367 3.4237 
87 1440 3.380 3.3641 3.2706 3.4576 129 1395 3.407 3.4032 3.3095 3.4969 
88 1475 3.299 3.3337 3.2402 3.4272 130 1354 3.350 3.4388 3.3447 3.5330 
89 1453 3.340 3.3528 3.2594 3.4463 131 1394 3.407 3.4041 3.3104 3.4978 
90 1444 3.301 3.3606 3.2672 3.4541 132 1495 3.263 3.3163 3.2228 3.4099 
91 1417 3.329 3.3841 3.2905 3.4777 133 1434 3.335 3.3693 3.2758 3.4628 
92 1396 3.375 3.4024 3.3087 3.4960 134 1523 3.278 3.2920 3.1982 3.3858 
93 1367 3.424 3.4275 3.3336 3.5215 135 1510 3.243 3.3033 3.2096 3.3970 
94 1501 3.291 3.3111 3.2175 3.4047 136 1450 3.305 3.3554 3.2620 3.4489 
95 1406 3.399 3.3937 3.3000 3.4873 137 1452 3.319 3.3537 3.2602 3.4472 
96 1394 3.428 3.4041 3.3104 3.4978 138 1556 3.191 3.2633 3.1692 3.3575 
97 1410 3.369 3.3902 3.2966 3.4838 139 1487 3.265 3.3233 3.2298 3.4168 
98 1391 3.395 3.4067 3.3130 3.5004 140 1474 3.372 3.3346 3.2411 3.4281 
99 1445 3.332 3.3598 3.2663 3.4532 141 1496 3.260 3.3155 3.2219 3.4090 
100 1490 3.383 3.3207 3.2271 3.4142 142 1550 3.232 3.2685 3.1745 3.3626 
101 1460 3.325 3.3467 3.2533 3.4402 143 1532 3.292 3.2842 3.1903 3.3781 
102 1424 3.352 3.3780 3.2845 3.4715 144 1456 3.330 3.3502 3.2568 3.4437 
103 1424 3.355 3.3780 3.2845 3.4715 145 1466 3.330 3.3415 3.2481 3.4350 
104 1452 3.346 3.3537 3.2602 3.4472 146 1512 3.300 3.3016 3.2079 3.3953 
105 1425 3.355 3.3772 3.2836 3.4707 147 1458 3.330 3.3485 3.2550 3.4419 
106 1446 3.336 3.3589 3.2654 3.4524 148 1463 3.311 3.3441 3.2507 3.4376 
107 1411 3.398 3.3893 3.2957 3.4829 149 1449 3.317 3.3563 3.2628 3.4498 
108 1455 3.321 3.3511 3.2576 3.4446 150 1536 3.231 3.2807 3.1868 3.3746 
109 1442 3.344 3.3624 3.2689 3.4559 151 1526 3.220 3.2894 3.1956 3.3832 
110 1415 3.379 3.3858 3.2923 3.4794 152 1455 3.319 3.3511 3.2576 3.4446 
111 1398 3.416 3.4006 3.3069 3.4943 153 1443 3.310 3.3615 3.2680 3.4550 
112 1415 3.380 3.3858 3.2923 3.4794 154 1452 3.320 3.3537 3.2602 3.4472 
113 1417 3.376 3.3841 3.2905 3.4777 155 1506 3.261 3.3068 3.2131 3.4004 
114 1396 3.399 3.4024 3.3087 3.4960 156 1460 3.255 3.3467 3.2533 3.4402 
115 1378 3.420 3.4180 3.3241 3.5119 157 1450 3.322 3.3554 3.2620 3.4489 
116 1357 3.460 3.4362 3.3421 3.5303 158 1540 3.249 3.2772 3.1833 3.3712 
117 1410 3.370 3.3902 3.2966 3.4838 159 1460 3.303 3.3467 3.2533 3.4402 
118 1396 3.407 3.4024 3.3087 3.4960 160 1497 3.250 3.3146 3.2210 3.4082 
119 1378 3.441 3.4180 3.3241 3.5119 161 1536 3.240 3.2807 3.1868 3.3746 
120 1410 3.399 3.3902 3.2966 3.4838 162 1468 3.303 3.3398 3.2463 3.4333 
121 1418 3.395 3.3832 3.2897 3.4768 
122 1411 3.408 3.3893 3.2957 3.4829 
123 1408 3.404 3.3919 3.2983 3.4855 
124 1408 3.404 3.3919 3.2983 3.4855 
125 1408 3.404 3.3919 3.2983 3.4855 
126 1408 3.404 3.3919 3.2983 3.4855 



APPENDIX 4.B 

Supporting Data For Ordinary Least Squares Model 
Using Natural Log Transformation 

OLS (Ln Transformation) Model Summary 

OLS Fit to Resistivity/Thickness Data 

Model: MODEL1 
Dependent Variable: LNRES 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Prob>F 

Model 
Error 
C Total 

1 
160 
161 

0.04510 
0.03143 
0.07653 

0.04510 
0.00020 

229.607 0.0001 

Root 
Dep 
C.V. 

MSE 
Mean 

0 
1 
1 

01402     R-s 
20920     Adj 
15905 

quare 
R-sq 

0 
0 

5893 
5868 

Parameter Estimates 

Parameter Standard T for HO: 
Variable DF Estimate Error Parameter=0 Prob > |T| 

INTERCEP 1 1.583155 0.02470361 64.086 0.0001 
THICK 1 -0.000257 

Variance 

0.00001697 -15.153 0.0001 

Variable DF Inflation 

INTERCEP 1 0.00000000 
THICK 1 1.00000000 

Durbin-Watson D 1.076 
(For Number of Obs.) 162 
1st Order Autocorrelation   0.452 



Natural Log Transformation and OLS Fit: 
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Data, Predicted Values, and 95% Prediction Intervals 

Dep exp exp exp 
In Var 1 Dep Var Predict (Predict L95% U95% (L95% (U95% 

Obs Thick Thick Res In (Res) Value Value) Predict Predict Predict) Predict) 

1 1599 7.3771 3.3019 1.1945 1.1720 3.2284 1.1438 1.2002 3.1387 3.3208 
2 1606 7.3815 3.2979 1.1933 1.1702 3.2226 1.1420 1.1984 3.1330 3.3148 
3 1511 7.3205 3.3609 1.2122 1.1947 3.3026 1.1668 1.2225 3.2117 3.3957 
4 1540 7.3395 3.4021 1.2244 1.1872 3.2779 1.1593 1.2151 3.1877 3.3706 
5 1614 7.3865 3.2050 1.1647 1.1682 3.2162 1.1399 1.1964 3.1265 3.3082 
6 1570 7.3588 3.3471 1.2081 1.1795 3.2527 1.1514 1.2075 3.1626 3.3451 
7 1616 7.3877 3.3351 1.2045 1.1677 3.2146 1.1394 1.1959 3.1249 3.3065 
8 1635 7.3994 3.2521 1.1793 1.1628 3.1989 1.1344 1.1912 3.1093 3.2910 
9 1220 7.1066 3.4959 1.2516 1.2695 3.5591 1.2406 1.2983 3.4577 3.6631 
10 1298 7.1686 3.4079 1.2261 1.2494 3.4882 1.2212 1.2777 3.3913 3.5884 
11 1269 7.1460 3.5019 1.2533 1.2569 3.5145 1.2284 1.2853 3.4158 3.6158 
12 1352 7.2093 3.3649 1.2134 1.2355 3.4401 1.2076 1.2635 3.3454 3.5378 
13 1260 7.1389 3.6401 1.2920 1.2592 3.5226 1.2307 1.2877 3.4236 3.6244 
14 1244 7.1261 3.5981 1.2804 1.2633 3.5371 1.2347 1.2919 3.4373 3.6397 
15 1252 7.1325 3.6082 1.2832 1.2612 3.5297 1.2327 1.2898 3.4305 3.6321 
16 1489 7.3059 3.3049 1.1954 1.2003 3.3211 1.1725 1.2281 3.2301 3.4147 
17 1506 7.3172 3.2580 1.1811 1.1959 3.3065 1.1681 1.2238 3.2159 3.4001 
18 1527 7.3311 3.2368 1.1746 1.1905 3.2887 1.1627 1.2184 3.1986 3.3818 
19 1501 7.3139 3.2230 1.1703 1.1972 3.3108 1.1694 1.2250 3.2201 3.4042 
20 1473 7.2951 3.3151 1.1985 1.2044 3.3348 1.1767 1.2322 3.2437 3.4288 
21 1548 7.3447 3.3411 1.2063 1.1851 3.2710 1.1572 1.2131 3.1810 3.3639 
22 1517 7.3245 3.3791 1.2176 1.1931 3.2973 1.1653 1.2210 3.2069 3.3906 
23 1522 7.3278 3.2310 1.1728 1.1918 3.2930 1.1640 1.2197 3.2027 3.3862 
24 1469 7.2923 3.2769 1.1869 1.2054 3.3381 1.1777 1.2332 3.2469 3.4322 
25 1513 7.3218 3.2320 1.1731 1.1941 3.3006 1.1663 1.2220 3.2101 3.3940 
26 1541 7.3402 3.2210 1.1697 1.1869 3.2769 1.1590 1.2149 3.1867 3.3700 
27 1542 7.3408 3.2681 1.1842 1.1867 3.2763 1.1588 1.2146 3.1861 3.3689 
28 1468 7.2917 3.3589 1.2116 1.2057 3.3391 1.1779 1.2335 3.2475 3.4332 
29 1406 7.2485 3.3960 1.2226 1.2216 3.3926 1.1938 1.2495 3.2996 3.4886 
30 1467 7.2910 3.2900 1.1909 1.2060 3.3401 1.1782 1.2337 3.2485 3.4339 
31 1468 7.2917 3.3750 1.2164 1.2057 3.3391 1.1779 1.2335 3.2475 3.4332 
32 1494 7.3092 3.3868 1.2199 1.1990 3.3168 1.1712 1.2268 3.2259 3.4103 
33 1410 7.2513 3.4522 1.2390 1.2206 3.3892 1.1928 1.2484 3.2963 3.4848 
34 1426 7.2626 3.4799 1.2470 1.2165 3.3754 1.1887 1.2443 3.2828 3.4705 
35 1500 7.3132 3.3501 1.2090 1.1975 3.3118 1.1697 1.2253 3.2210 3.4052 
36 1508 7.3185 3.3511 1.2093 1.1954 3.3049 1.1676 1.2232 3.2143 3.3980 
37 1437 7.2703 3.4422 1.2361 1.2137 3.3659 1.1859 1.2414 3.2736 3.4605 
38 1451 7.2800 3.4260 1.2314 1.2101 3.3538 1.1823 1.2378 3.2619 3.4480 
39 1476 7.2971 3.3760 1.2167 1.2036 3.3321 1.1759 1.2314 3.2411 3.4260 
40 1449 7.2786 3.3781 1.2173 1.2106 3.3555 1.1828 1.2384 3.2635 3.4501 
41 1452 7.2807 3.3940 1.2220 1.2098 3.3528 1.1821 1.2376 3.2612 3.4473 
42 1509 7.3192 3.3251 1.2015 1.1952 3.3042 1.1673 1.2230 3.2133 3.3974 



Dep exp exp 
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exp 
In Var Dep Var Predict (Predict L95% U95% (L95% (U95% 

Obs Thick Thick Res In (Res) Value Value) Predict Predict Predict) Predict) 

43 1436 7.2696 3.3451 1.2075 1.2139 3.3666 1.1862 1.2417 3.2746 3.4615 
44 1375 7.2262 3.4970 1.2519 1.2296 3.4199 1.2017 1.2575 3.3258 3.5166 
45 1392 7.2385 3.4560 1.2401 1.2252 3.4048 1.1974 1.2531 3.3115 3.5012 
46 1461 7.2869 3.4250 1.2311 1.2075 3.3451 1.1797 1.2353 3.2534 3.4394 
47 1446 7.2766 3.4439 1.2366 1.2114 3.3582 1.1836 1.2391 3.2661 3.4525 
48 1428 7.2640 3.3679 1.2143 1.2160 3.3737 1.1882 1.2438 3.2812 3.4688 
49 1435 7.2689 3.4250 1.2311 1.2142 3.3676 1.1864 1.2420 3.2753 3.4625 
50 1458 7.2848 3.3940 1.2220 1.2083 3.3478 1.1805 1.2360 3.2560 3.4418 
51 1460 7.2862 3.3471 1.2081 1.2078 3.3461 1.1800 1.2355 3.2544 3.4401 
52 1452 7.2807 3.4001 1.2238 1.2098 3.3528 1.1821 1.2376 3.2612 3.4473 
53 1421 7.2591 3.4301 1.2326 1.2178 3.3797 1.1900 1.2456 3.2871 3.4750 
54 1436 7.2696 3.3950 1.2223 1.2139 3.3666 1.1862 1.2417 3.2746 3.4615 
55 1528 7.3317 3.2730 1.1857 1.1903 3.2881 1.1624 1.2182 3.1976 3.3811 
56 1482 7.3011 3.3291 1.2027 1.2021 3.3271 1.1743 1.2299 3.2359 3.4209 
57 1493 7.3085 3.3171 1.1991 1.1993 3.3178 1.1715 1.2271 3.2268 3.4113 
58 1451 7.2800 3.3501 1.2090 1.2101 3.3538 1.1823 1.2378 3.2619 3.4480 
59 1457 7.2841 3.3700 1.2149 1.2085 3.3485 1.1808 1.2363 3.2570 3.4429 
60 1442 7.2738 3.3710 1.2152 1.2124 3.3615 1.1846 1.2402 3.2694 3.4563 
61 1410 7.2513 3.4319 1.2331 1.2206 3.3892 1.1928 1.2484 3.2963 3.4848 
62 1456 7.2834 3.3451 1.2075 1.2088 3.3495 1.1810 1.2366 3.2576 3.4439 
63 1474 7.2957 3.3401 1.2060 1.2042 3.3341 1.1764 1.2319 3.2427 3.4277 
64 1448 7.2779 3.3501 1.2090 1.2108 3.3562 1.1831 1.2386 3.2645 3.4508 
65 1491 7.3072 3.3132 1.1979 1.1998 3.3195 1.1720 1.2276 3.2284 3.4130 
66 1478 7.2984 3.4240 1.2308 1.2031 3.3304 1.1754 1.2309 3.2394 3.4243 
67 1416 7.2556 3.4312 1.2329 1.2191 3.3841 1.1913 1.2469 3.2914 3.4795 
68 1402 7.2457 3.4339 1.2337 1.2227 3.3963 1.1949 1.2505 3.3032 3.4921 
69 1491 7.3072 3.3201 1.2000 1.1998 3.3195 1.1720 1.2276 3.2284 3.4130 
70 1444 7.2752 3.3301 1.2030 1.2119 3.3599 1.1841 1.2396 3.2677 3.4542 
71 1486 7.3038 3.3049 1.1954 1.2011 3.3238 1.1733 1.2289 3.2326 3.4175 
72 1474 7.2957 3.3301 1.2030 1.2042 3.3341 1.1764 1.2319 3.2427 3.4277 
73 1442 7.2738 3.3801 1.2179 1.2124 3.3615 1.1846 1.2402 3.2694 3.4563 
74 1459 7.2855 3.3181 1.1994 1.2080 3.3468 1.1803 1.2358 3.2554 3.4411 
75 1459 7.2855 3.4001 1.2238 1.2080 3.3468 1.1803 1.2358 3.2554 3.4411 
76 1506 7.3172 3.2799 1.1878 1.1959 3.3065 1.1681 1.2238 3.2159 3.4001 
77 1467 7.2910 3.3261 1.2018 1.2060 3.3401 1.1782 1.2337 3.2485 3.4339 
78 1471 7.2937 3.4570 1.2404 1.2049 3.3364 1.1772 1.2327 3.2453 3.4305 
79 1495 7.3099 3.2999 1.1939 1.1988 3.3161 1.1710 1.2266 3.2252 3.4096 
80 1497 7.3112 3.2970 1.1930 1.1983 3.3145 1.1704 1.2261 3.2233 3.4079 
81 1444 7.2752 3.3940 1.2220 1.2119 3.3599 1.1841 1.2396 3.2677 3.4542 
82 1483 7.3018 3.3291 1.2027 1.2018 3.3261 1.1741 1.2296 3.2352 3.4199 
83 1420 7.2584 3.3049 1.1954 1.2180 3.3804 1.1903 1.2458 3.2881 3.4757 
84 1464 7.2889 3.3079 1.1963 1.2067 3.3424 1.1790 1.2345 3.2511 3.4367 
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Dep exp exp exp 
In Var Dep Var Predict (Predict L95% U95% (L95% (U95% 

Obs Thick Thick Res In (Res) Value Value) Predict Predict Predict) Predict) 

85 1458 7.2848 3.3421 1.2066 1.2083 3.3478 1.1805 1.2360 3.2560 3.4418 
86 1453 7.2814 3.3271 1.2021 1.2096 3.3521 1.1818 1.2373 3.2602 3.4463 
87 1440 7.2724 3.3801 1.2179 1.2129 3.3632 1.1851 1.2407 3.2710 3.4580 
88 1475 7.2964 3.2989 1.1936 1.2039 3.3331 1.1761 1.2317 3.2417 3.4271 
89 1453 7.2814 3.3401 1.2060 1.2096 3.3521 1.1818 1.2373 3.2602 3.4463 
90 1444 7.2752 3.3009 1.1942 1.2119 3.3599 1.1841 1.2396 3.2677 3.4542 
91 1417 7.2563 3.3291 1.2027 1.2188 3.3831 1.1910 1.2466 3.2904 3.4785 
92 1396 7.2414 3.3750 1.2164 1.2242 3.4014 1.1964 1.2521 3.3082 3.4977 
93 1367 7.2204 3.4240 1.2308 1.2317 3.4271 1.2038 1.2596 3.3328 3.5240 
94 1501 7.3139 3.2910 1.1912 1.1972 3.3108 1.1694 1.2250 3.2201 3.4042 
95 1406 7.2485 3.3991 1.2235 1.2216 3.3926 1.1938 1.2495 3.2996 3.4886 
96 1394 7.2399 3.4281 1.2320 1.2247 3.4031 1.1969 1.2526 3.3098 3.4994 
97 1410 7.2513 3.3689 1.2146 1.2206 3.3892 1.1928 1.2484 3.2963 3.4848 
98 1391 7.2378 3.3950 1.2223 1.2255 3.4059 1.1977 1.2533 3.3125 3.5019 
99 1445 7.2759 3.3321 1.2036 1.2116 3.3589 1.1839 1.2394 3.2671 3.4535 
100 1490 7.3065 3.3831 1.2188 1.2001 3.3204 1.1723 1.2278 3.2294 3.4137 
101 1460 7.2862 3.3251 1.2015 1.2078 3.3461 1.1800 1.2355 3.2544 3.4401 
102 1424 7.2612 3.3521 1.2096 1.2170 3.3770 1.1892 1.2448 3.2845 3.4722 
103 1424 7.2612 3.3552 1.2105 1.2170 3.3770 1.1892 1.2448 3.2845 3.4722 
104 1452 7.2807 3.3461 1.2078 1.2098 3.3528 1.1821 1.2376 3.2612 3.4473 
105 1425 7.2619 3.3552 1.2105 1.2168 3.3764 1.1890 1.2445 3.2838 3.4712 
106 1446 7.2766 3.3361 1.2048 1.2114 3.3582 1.1836 1.2391 3.2661 3.4525 
107 1411 7.2521 3.3980 1.2232 1.2204 3.3885 1.1926 1.2482 3.2956 3.4841 
108 1455 7.2828 3.3211 1.2003 1.2090 3.3501 1.1813 1.2368 3.2586 3.4446 
109 1442 7.2738 3.3441 1.2072 1.2124 3.3615 1.1846 1.2402 3.2694 3.4563 
110 1415 7.2549 3.3791 1.2176 1.2193 3.3848 1.1915 1.2471 3.2920 3.4802 
111 1398 7.2428 3.4161 1.2285 1.2237 3.3997 1.1959 1.2515 3.3065 3.4956 
112 1415 7.2549 3.3801 1.2179 1.2193 3.3848 1.1915 1.2471 3.2920 3.4802 
113 1417 7.2563 3.3760 1.2167 1.2188 3.3831 1.1910 1.2466 3.2904 3.4785 
114 1396 7.2414 3.3991 1.2235 1.2242 3.4014 1.1964 1.2521 3.3082 3.4977 
115 1378 7.2284 3.4199 1.2296 1.2288 3.4171 1.2010 1.2567 3.3234 3.5138 
116 1357 7.2130 3.4601 1.2413 1.2342 3.4356 1.2063 1.2622 3.3411 3.5332 
117 1410 7.2513 3.3700 1.2149 1.2206 3.3892 1.1928 1.2484 3.2963 3.4848 
118 1396 7.2414 3.4069 1.2258 1.2242 3.4014 1.1964 1.2521 3.3082 3.4977 
119 1378 7.2284 3.4411 1.2358 1.2288 3.4171 1.2010 1.2567 3.3234 3.5138 
120 1410 7.2513 3.3991 1.2235 1.2206 3.3892 1.1928 1.2484 3.2963 3.4848 
121 1418 7.2570 3.3950 1.2223 1.2186 3.3824 1.1908 1.2464 3.2897 3.4778 
122 1411 7.2521 3.4079 1.2261 1.2204 3.3885 1.1926 1.2482 3.2956 3.4841 

123 1408 7.2499 3.4042 1.2250 1.2211 3.3909 1.1933 1.2489 3.2979 3.4865 
124 1408 7.2499 3.4042 1.2250 1.2211 3.3909 1.1933 1.2489 3.2979 3.4865 
125 1408 7.2499 3.4042 1.2250 1.2211 3.3909 1.1933 1.2489 3.2979 3.4865 

126 1408 7.2499 3.4042 1.2250 1.2211 3.3909 1.1933 1.2489 3.2979 3.4865 
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Dep exp exp exp 
In Var Dep Var Predict (Predict L95% U95% (L95% (U95% 

Obs Thick Thick Res In (Res) Value Value) Predict Predict Predict) Predict) 

127 1407 7.2492 3.3700 1.2149 1.2214 3.3919 1.1936 1.2492 3.2989 3.4876 
128 1479 7.2991 3.2851 1 1894 1.2029 3.3298 1.1751 1.2307 3.2385 3.4236 
129 1395 7.2406 3.4069 1 2258 1.2245 3.4025 1.1966 1.2523 3.3088 3.4984 
130 1354 7.2108 3.3501 1 2090 1.2350 3.4384 1.2071 1.2630 3.3438 3.5360 
131 1394 7.2399 3.4069 1 2258 1.2247 3.4031 1.1969 1.2526 3.3098 3.4994 
132 1495 7.3099 3.2628 1 1826 1.1988 3.3161 1.1710 1.2266 3.2252 3.4096 
133 1434 7.2682 3.3351 1 2045 1.2144 3.3683 1.1867 1.2422 3.2763 3.4632 
134 1523 7.3284 3.2779 1 1872 1.1916 3.2923 1.1637 1.2194 3.2018 3.3852 
135 1510 7.3199 3.2430 1 1765 1.1949 3.3032 1.1671 1.2227 3.2127 3.3963 
136 1450 7.2793 3.3049 1 1954 1.2103 3.3545 1.1826 1.2381 3.2628 3.4491 
137 1452 7.2807 3.3191 1 1997 1.2098 3.3528 1.1821 1.2376 3.2612 3.4473 
138 1556 7.3499 3.1909 1 1603 1.1831 3.2645 1.1551 1.2111 3.1743 3.3572 
139 1487 7.3045 3.2651 1 1833 1.2008 3.3228 1.1730 1.2286 3.2317 3.4164 
140 1474 7.2957 3.3720 1 2155 1.2042 3.3341 1.1764 1.2319 3.2427 3.4277 
141 1496 7.3106 3.2599 1 1817 1.1985 3.3151 1.1707 1.2263 3.2242 3.4086 
142 1550 7.3460 3.2320 1 1731 1.1846 3.2694 1.1567 1.2126 3.1794 3.3622 
143 1532 7.3343 3.2920 1 1915 1.1893 3.2848 1.1614 1.2171 3.1944 3.3774 
144 1456 7.2834 3.3301 1 2030 1.2088 3.3495 1.1810 1.2366 3.2576 3.4439 
145 1466 7.2903 3.3301 1 2030 1.2062 3.3408 1.1785 1.2340 3.2495 3.4349 
146 1512 7.3212 3.2999 1 1939 1.1944 3.3016 1.1666 1.2222 3.2111 3.3946 
147 1458 7.2848 3.3301 1 2030 1.2083 3.3478 1.1805 1.2360 3.2560 3.4418 
148 1463 7.2882 3.3112 1 1973 1.2070 3.3434 1.1792 1.2348 3.2518 3.4377 
149 1449 7.2786 3.3171 1 1991 1.2106 3.3555 1.1828 1.2384 3.2635 3.4501 
150 1536 7.3369 3.2310 1 1728 1.1882 3.2812 1.1603 1.2161 3.1909 3.3740 
151 1526 7.3304 3.2201 1 1694 1.1908 3.2897 1.1629 1.2187 3.1992 3.3828 
152 1455 7.2828 3.3191 1 1997 1.2090 3.3501 1.1813 1.2368 3.2586 3.4446 
153 1443 7.2745 3.3098 1 1969 1.2121 3.3605 1.1844 1.2399 3.2687 3.4553 
154 1452 7.2807 3.3201 1 2000 1.2098 3.3528 1.1821 1.2376 3.2612 3.4473 
155 1506 7.3172 3.2609 1 1820 1.1959 3.3065 1.1681 1.2238 3.2159 3.4001 
156 1460 7.2862 3.2550 1 1802 1.2078 3.3461 1.1800 1.2355 3.2544 3.4401 
157 1450 7.2793 3.3221 1 2006 1.2103 3.3545 1.1826 1.2381 3.2628 3.4491 
158 1540 7.3395 3.2488 1 1783 1.1872 3.2779 1.1593 1.2151 3.1877 3.3706 
159 1460 7.2862 3.3029 1 1948 1.2078 3.3461 1.1800 1.2355 3.2544 3.4401 
160 1497 7.3112 3.2501 1 1787 1.1983 3.3145 1.1704 1.2261 3.2233 3.4079 
161 1536 7.3369 3.2401 1 1756 1.1882 3.2812 1.1603 1.2161 3.1909 3.3740 
162 1468 7.2917 3.3029 1 1948 1.2057 3.3391 1.1779 1.2335 3.2475 3.4332 



APPENDIX 4.C. 

Supporting Data For GLM First-Order Model 

GLM First-order Model Summary 

GLM Fit to Resistivity/Thickness Data 

The GENMOD Procedure 

Model Information 

Description Value 

Data Set WORK.PHOS 
Distribution GAMMA 
Link Function POWER(-1) 
Dependent Variable RS 
Observations Used 162 

Criteria For Assessing Goodness Of Fit 

Criterion DF        Value     Value/DF 

Deviance 
Scaled Deviance 
Pearson Chi-Square 
Scaled Pearson X2 
Log Likelihood 

Analysis Of Parameter Estimates 

160 0.0313 0.0002 
160 161.9677 1.0123 
160 0.0314 0.0002 
160 162.6802 

266.9343 
1.0168 

Parameter DF Estimate Std Err ChiSquare Pr>Chi 

INTERCEPT 
THICK 
SCALE 

1 
1 
1 

0.1870 
0.0001 

5174.9827 

0.0072 
0.0000 

574.9796 

669.8431 
237.4607 

0.0001 
0.0001 

NOTE:  The scale parameter was estimated by maximum likelihood. 

LR Statistics For Type 1 Analysis 

Source      Deviance   DF   ChiSquare  Pr>Chi 

INTERCEPT      0.0769     0 
THICK 0.0313     1    145.5487  0.0001 
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GLM First-order Fit 
Data, Predicted Values, and 95% Prediction Intervals 

Pred 
Error L95% U95% 

Obs Thick Resist Pred Xbeta Std Half- Predict Predict 
Width 

1 1599 3.302 3.2308 0.3095 0.000799 0.0902 3.1408 3.3212 
2 1606 3.298 3.2252 0.3101 0.000831 0.0902 3.1346 3.3149 
3 1511 3.361 3.3027 0.3028 0.000438 0.0912 3.2114 3.3937 
4 1540 3.402 3.2786 0.3050 0.000545 0.0908 3.1879 3.3694 
5 1614 3.205 3.2188 0.3107 0.000868 0.0901 3.1284 3.3087 
6 1570 3.347 3.2541 0.3073 0.000670 0.0904 3.1637 3.3446 
7 1616 3.335 3.2172 0.3108 0.000877 0.0901 3.1274 3.3076 
8 1635 3.252 3.2022 0.3123 0.000965 0.0901 3.1120 3.2921 
9 1220 3.496 3.5652 0.2805 0.001200 0.1024 3.4627 3.6675 
10 1298 3.408 3.4908 0.2865 0.000833 0.0979 3.3925 3.5883 
11 1269 3.502 3.5181 0.2842 0.000967 0.0994 3.4192 3.6181 
12 1352 3.365 3.4411 0.2906 0.000595 0.0955 3.3457 3.5366 
13 1260 3.640 3.5266 0.2836 0.001010 0.0999 3.4262 3.6260 
14 1244 3.598 3.5420 0.2823 0.001085 0.1009 3.4414 3.6432 
15 1252 3.608 3.5343 0.2829 0.001047 0.1004 3.4344 3.6352 
16 1489 3.305 3.3212 0.3011 0.000374 0.0915 3.2296 3.4127 
17 1506 3.258 3.3069 0.3024 0.000421 0.0912 3.2156 3.3981 
18 1527 3.237 3.2894 0.3040 0.000494 0.0909 3.1986 3.3804 
19 1501 3.223 3.3111 0.3020 0.000406 0.0913 3.2199 3.4026 
20 1473 3.315 3.3347 0.2999 0.000342 0.0918 3.2426 3.4263 
21 1548 3.341 3.2721 0.3056 0.000577 0.0907 3.1816 3.3629 
22 1517 3.379 3.2977 0.3032 0.000458 0.0911 3.2071 3.3892 
23 1522 3.231 3.2935 0.3036 0.000476 0.0910 3.2028 3.3848 
24 1469 3.277 3.3382 0.2996 0.000336 0.0919 3.2459 3.4297 
25 1513 3.232 3.3010 0.3029 0.000444 0.0911 3.2103 3.3926 
26 1541 3.221 3.2778 0.3051 0.000549 0.0907 3.1869 3.3683 
27 1542 3.268 3.2770 0.3052 0.000553 0.0907 3.1858 3.3673 
28 1468 3.359 3.3390 0.2995 0.000335 0.0920 3.2469 3.4309 
29 1406 3.396 3.3928 0.2947 0.000399 0.0936 3.2997 3.4869 
30 1467 3.290 3.3399 0.2994 0.000334 0.0920 3.2480 3.4320 
31 1468 3.375 3.3390 0.2995 0.000335 0.0920 3.2469 3.4309 
32 1494 3.387 3.3170 0.3015 0.000386 0.0914 3.2253 3.4082 
33 1410 3.452 3.3893 0.2950 0.000388 0.0935 3.2964 3.4833 
34 1426 3.480 3.3753 0.2963 0.000351 0.0930 3.2820 3.4679 
35 1500 3.350 3.3119 0.3019 0.000403 0.0914 3.2210 3.4037 
36 1508 3.351 3.3052 0.3026 0.000428 0.0912 3.2135 3.3959 
37 1437 3.442 3.3657 0.2971 0.000334 0.0927 3.2732 3.4586 
38 1451 3.426 3.3536 0.2982 0.000326 0.0923 3.2611 3.4458 
39 1476 3.376 3.3322 0.3001 0.000347 0.0918 3.2404 3.4240 
40 1449 3.378 3.3553 0.2980 0.000326 0.0924 3.2633 3.4481 
41 1452 3.394 3.3527 0.2983 0.000326 0.0923 3.2600 3.4446 
42 1509 3.325 3.3044 0.3026 0.000431 0.0912 3.2135 3.3959 



Obs Thick Resist Pred Xbeta 

43 1436 3.345 3.3666 0.2970 
44 1375 3.497 3.4204 0.2924 
45 1392 3.456 3.4052 0.2937 
46 1461 3.425 3.3450 0.2990 
47 1446 3.444 3.3579 0.2978 
48 1428 3.368 3.3735 0.2964 
49 1435 3.425 3.3674 0.2970 
50 1458 3.394 3.3476 0.2987 
51 1460 3.347 3.3459 0.2989 
52 1452 3.400 3.3527 0.2983 
53 1421 3.430 3.3796 0.2959 
54 1436 3.395 3.3666 0.2970 
55 1528 3.273 3.2885 0.3041 
56 1482 3.329 3.3271 0.3006 
57 1493 3.317 3.3178 0.3014 
58 1451 3.350 3.3536 0.2982 
59 1457 3.370 3.3484 0.2986 
60 1442 3.371 3.3614 0.2975 
61 1410 3.432 3.3893 0.2950 
62 1456 3.345 3.3493 0.2986 
63 1474 3.340 3.3339 0.2999 
64 1448 3.350 3.3562 0.2980 
65 1491 3.313 3.3195 0.3013 
66 1478 3.424 3.3305 0.3003 
67 1416 3.431 3.3840 0.2955 
68 1402 3.434 3.3964 0.2944 
69 1491 3.320 3.3195 0.3013 
70 1444 3.330 3.3596 0.2977 
71 1486 3.305 3.3237 0.3009 
72 1474 3.330 3.3339 0.2999 
73 1442 3.380 3.3614 0.2975 
74 1459 3.318 3.3467 0.2988 
75 1459 3.400 3.3467 0.2988 
76 1506 3.280 3.3069 0.3024 
77 1467 3.326 3.3399 0.2994 
78 1471 3.457 3.3365 0.2997 
79 1495 3.300 3.3161 0.3016 
80 1497 3.297 3.3144 0.3017 
81 1444 3.394 3.3596 0.2977 
82 1483 3.329 3.3263 0.3006 
83 1420 3.305 3.3805 0.2958 
84 1464 3.308 3.3424 0.2992 

104 

Pred 
Error L95% U95% 

Std Half- 
Width 

Predict Predict 

0.000336 0.0927 3.2743 3.4597 
0.000504 0.0946 3.3254 3.5146 
0.000442 0.0940 3.3108 3.4989 
0.000329 0.0921 3.2524 3.4366 
0.000327 0.0925 3.2655 3.4504 
0.000347 0.0929 3.2809 3.4668 
0.000337 0.0927 3.2743 3.4597 
0.000327 0.0922 3.2556 3.4400 
0.000328 0.0921 3.2535 3.4377 
0.000326 0.0923 3.2600 3.4446 
0.000361 0.0931 3.2864 3.4727 
0.000336 0.0927 3.2743 3.4597 
0.000498 0.0909 3.1975 3.3793 
0.000358 0.0917 3.2350 3.4183 
0.000384 0.0915 3.2264 3.4093 
0.000326 0.0923 3.2611 3.4458 
0.000327 0.0922 3.2567 3.4412 
0.000330 0.0926 3.2688 3.4539 
0.000388 0.0935 3.2964 3.4833 
0.000326 0.0922 3.2567 3.4412 
0.000343 0.0919 3.2426 3.4263 
0.000326 0.0924 3.2633 3.4481 
0.000379 0.0915 3.2275 3.4104 
0.000350 0.0917 3.2383 3.4217 
0.000372 0.0933 3.2908 3.4774 
0.000410 0.0937 3.3030 3.4905 
0.000379 0.0915 3.2275 3.4104 
0.000328 0.0925 3.2666 3.4516 
0.000367 0.0916 3.2318 3.4150 
0.000343 0.0919 3.2426 3.4263 
0.000330 0.0926 3.2688 3.4539 
0.000328 0.0922 3.2546 3.4389 
0.000328 0.0922 3.2546 3.4389 
0.000421 0.0912 3.2156 3.3981 
0.000334 0.0920 3.2480 3.4320 
0.000339 0.0919 3.2448 3.4286 
0.000389 0.0914 3.2242 3.4071 
0.000395 0.0914 3.2232 3.4059 
0.000328 0.0925 3.2666 3.4516 
0.000360 0.0917 3.2350 3.4183 
0.000363 0.0932 3.2875 3.4738 
0.000331 0.0920 3.2502 3.4343 
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Pred 
Error L95%  U95% 

Obs Thick Resist Pred    Xbeta       Std Half- Predict Predict 
Width 

85 1458 3.342 3.3476 0.2987 0.000327 0.0922 3.2556 3.4400 
3.327 3.3519 0.2983 0.000326 0.0923 3.2600 3.4446 
3.380 3.3631 0.2973 0.000331 0.0926 3.2710 3.4562 
3.299 3.3330 0.3000 0.000345 0.0918 3.2415 3.4252 
3.340 3.3519 0.2983 0.000326 0.0923 3.2600 3.4446 
3.301 3.3596 0.2977 0.000328 0.0925 3.2666 3.4516 
3.329 3.3831 0.2956 0.000370 0.0932 3.2897 3.4762 
3.375 3.4017 0.2940 0.000429 0.0939 3.3075 3.4953 
3.424 3.4276 0.2918 0.000534 0.0949 3.3321 3.5219 
3.291 3.3111 0.3020 0.000406 0.0913 3.2199 3.4026 
3.399 3.3928 0.2947 0.000399 0.0936 3.2997 3.4869 
3.428 3.4034 0.2938 0.000436 0.0940 3.3097 3.4976 
3.369 3.3893 0.2950 0.000388 0.0935 3.2964 3.4833 
3.395 3.40610.2936 0.000446 0.0941 3.3119 3.5001 
3.332 3.3588 0.2977 0.000328 0.0925 3.2666 3.4516 
3.383 3.3203 0.3012 0.000376 0.0915 3.2285 3.4116 
3.325 3.3459 0.2989 0.000328 0.0921 3.2535 3.4377 
3.352 3.3770 0.2961 0.000355 0.0931 3.2842 3.4703 
3.355 3.3770 0.2961 0.000355 0.0931 3.2842 3.4703 
3.346 3.3527 0.2983 0.000326 0.0923 3.2600 3.4446 
3.355 3.3761 0.2962 0.000353 0.0930 3.2831 3.4691 
3.336 3.3579 0.2978 0.000327 0.0925 3.2655 3.4504 
3.398 3.3884 0.2951 0.000385 0.0934 3.2952 3.4821 
3.321 3.3502 0.2985 0.000326 0.0923 3.2578 3.4423 
3.344 3.3614 0.2975 0.000330 0.0926 3.2688 3.4539 
3.379 3.3849 0.2954 0.000375 0.0933 3.2919 3.4786 
3.416 3.3999 0.2941 0.000423 0.0938 3.3064 3.4940 
3.380 3.3849 0.2954 0.000375 0.0933 3.2919 3.4786 
3.376 3.3831 0.2956 0.000370 0.0932 3.2897 3.4762 
3.399 3.4017 0.2940 0.000429 0.0939 3.3075 3.4953 
3.420 3.4177 0.2926 0.000492 0.0945 3.3231 3.5121 
3.460 3.4366 0.2910 0.000575 0.0953 3.3411 3.5317 
3.370 3.3893 0.2950 0.000388 0.0935 3.2964 3.4833 
3.407 3.4017 0.2940 0.000429 0.0939 3.3075 3.4953 
3.441 3.4177 0.2926 0.000492 0.0945 3.3231 3.5121 
3.399 3.3893 0.2950 0.000388 0.0935 3.2964 3.4833 
3.395 3.3823 0.2957 0.000368 0.0932 3.2886 3.4750 
3.408 3.3884 0.2951 0.000385 0.0934 3.2952 3.4821 
3.404 3.3911 0.2949 0.000393 0.0935 3.2975 3.4845 
3.404 3.3911 0.2949 0.000393 0.0935 3.2975 3.4845 
3.404 3.3911 0.2949 0.000393 0.0935 3.2975 3.4845 
3.404 3.3911 0.2949 0.000393 0.0935 3.2975 3.4845 

86 1453 

87 1440 
88 1475 
89 1453 
90 1444 

91 1417 
92 1396 

93 1367 
94 1501 

95 1406 
96 1394 
97 1410 
98 1391 
99 1445 
100 1490 
101 1460 
102 1424 

103 1424 
104 1452 
105 1425 
106 1446 
107 1411 
108 1455 
109 1442 
110 1415 
111 1398 
112 1415 

113 1417 
114 1396 
115 1378 
116 1357 
117 1410 
118 1396 
119 1378 
120 1410 
121 1418 
122 1411 

123 1408 
124 1408 

125 1408 
126 1408 
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Pred 
Error L95% U95% 

Obs Thick Resist Pred Xbeta Std Half- Predict Predict 
Width 

127 1407 3.370 3.3919 0.2948 0.000396 0.0936 3.2986 3.4857 
128 1479 3.285 3.3296 0.3003 0.000352 0.0917 3.2383 3.4217 
129 1395 3.407 3.4025 0.2939 0.000433 0.0939 3.3086 3.4965 
130 1354 3.350 3.4393 0.2908 0.000587 0.0954 3.3434 3.5342 
131 1394 3.407 3.4034 0.2938 0.000436 0.0940 3.3097 3.4976 
132 1495 3.263 3.3161 0.3016 0.000389 0.0914 3.2242 3.4071 
133 1434 3.335 3.3683 0.2969 0.000338 0.0928 3.2754 3.4609 
134 1523 3.278 3.2927 0.3037 0.000480 0.0910 3.2017 3.3837 
135 1510 3.243 3.3035 0.3027 0.000434 0.0912 3.2124 3.3948 
136 1450 3.305 3.3545 0.2981 0.000326 0.0924 3.2622 3.4470 
137 1452 3.319 3.3527 0.2983 0.000326 0.0923 3.2600 3.4446 
138 1556 3.191 3.2655 0.3062 0.000610 0.0906 3.1753 3.3564 
139 1487 3.265 3.3229 0.3009 0.000369 0.0916 3.2318 3.4150 
140 1474 3.372 3.3339 0.2999 0.000343 0.0919 3.2426 3.4263 
141 1496 3.260 3.3153 0.3016 0.000392 0.0914 3.2242 3.4071 
142 1550 3.232 3.2704 0.3058 0.000585 0.0906 3.1795 3.3607 
143 1532 3.292 3.2852 0.3044 0.000513 0.0908 3.1943 3.3760 
144 1456 3.330 3.3493 0.2986 0.000326 0.0922 3.2567 3.4412 
145 1466 3.330 3.3407 0.2993 0.000333 0.0920 3.2491 3.4331 
146 1512 3.300 3.3019 0.3029 0.000441 0.0911 3.2103 3.3925 
147 1458 3.330 3.3476 0.2987 0.000327 0.0922 3.2556 3.4400 
148 1463 3.311 3.3433 0.2991 0.000330 0.0921 3.2513 3.4354 
149 1449 3.317 3.3553 0.2980 0.000326 0.0924 3.2633 3.4481 
150 1536 3.231 3.2819 0.3047 0.000529 0.0908 3.1911 3.3727 
151 1526 3.220 3.2902 0.3039 0.000491 0.0909 3.1996 3.3815 
152 1455 3.319 3.3502 0.2985 0.000326 0.0923 3.2578 3.4423 
153 1443 3.310 3.3605 0.2976 0.000329 0.0925 3.2677 3.4528 
154 1452 3.320 3.3527 0.2983 0.000326 0.0923 3.2600 3.4446 
155 1506 3.261 3.3069 0.3024 0.000421 0.0912 3.2156 3.3981 
156 1460 3.255 3.3459 0.2989 0.000328 0.0921 3.2535 3.4377 
157 1450 3.322 3.3545 0.2981 0.000326 0.0924 3.2622 3.4470 
158 1540 3.249 3.2786 0.3050 0.000545 0.0908 3.1879 3.3694 
159 1460 3.303 3.3459 0.2989 0.000328 0.0921 3.2535 3.4377 
160 1497 3.250 3.3144 0.3017 0.000395 0.0914 3.2232 3.4059 
161 1536 3.240 3.2819 0.3047 0.000529 0.0908 3.1911 3.3727 
162 1468 3.303 3.3390 0.2995 0.000335 0.0920 3.2469 3.4309 



APPENDIX 4.D. 

Supporting Data For GLM Second-Order Model 

GLM Second-order Model Summary 

GLM Fit to Resistivity/Thickness Data 

The GENMOD Procedure 

Model Information 

Description 

Data Set 
Distribution 
Link Function 
Dependent Variable 
Observations Used 

Value 

WORK.PHOS 
GAMMA 
POWER (-1) 
RS 
162 

Criteria For Assessing Goodness Of Fit 

Criterion DF        Value     Value/DF 

Deviance 
Scaled Deviance 
Pearson Chi-Square 
Scaled Pearson X2 
Log Likelihood 

159 0.0306 0 0002 
159 161.9652 1 0186 
159 0.0307 0 0002 
159 162.3942 

268.7482 
1 0213 

Parameter 

INTERCEPT 
THICK 
THICK2 
SCALE 

Analysis Of Parameter Estimates 

DF 

1 
1 
1 
1 

Estimate 

0.0354 
0.0003 

-0.0000 
5292.0973 

Std Err   ChiSquare  Pr>Chi 

0.0781 
0.0001 
0.0000 

587.9959 

0.2053 0.6505 
7.0378 0.0080 
3.8063  0.0511 

NOTE: The scale parameter was estimated by maximum likelihood. 

LR Statistics For Type 1 Analysis 

Source      Deviance   DF   ChiSquare  Pr>Chi 

INTERCEPT 0.0769 0 
THICK 0.0313 1 145.5487 0.0001 
THICK2 0.0306 1 3.6280 0.0568 
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GLM Second-order Fit 

Data, Predicted Values, and 95% Prediction Intervals 

Obs Thick Resist   Pred    Xbeta      Std 

1 1599 3.302 3.2485 0.3078 0.00117 
2 1606 3.298 3.2447 0.3082 0.00126 
3 1511 3.361 3.3038 0.3027 0.00044 
4 1540 3.402 3.2840 0.3045 0.00060 
5 1614 3.205 3.2405 0.3086 0.00137 
6 1570 3.347 3.2652 0.3063 0.00085 
7 1616 3.335 3.2395 0.3087 0.00140 
8 1635 3.252 3.2299 0.3096 0.00167 
9 1220 3.496 3.6038 0.2775 0.00194 
10 1298 3.408 3.5030 0.2855 0.00097 
11 1269 3.502 3.5385 0.2826 0.00127 
12 1352 3.365 3.4428 0.2905 0.00059 
13 1260 3.640 3.5500 0.2817 0.00138 
14 1244 3.598 3.5710 0.2800 0.00159 
15 1252 3.608 3.5604 0.2809 0.00148 
16 1489 3.305 3.3199 0.3012 0.00037 
17 1506 3.258 3.3074 0.3024 0.00042 
18 1527 3.237 3.2927 0.3037 0.00051 
19 1501 3.223 3.3110 0.3020 0.00040 
20 1473 3.315 3.3322 0.3001 0.00036 
21 1548 3.341 3.2789 0.3050 0.00066 
22 1517 3.379 3.2996 0.3031 0.00046 
23 1522 3.231 3.2961 0.3034 0.00049 
24 1469 3.277 3.3354 0.2998 0.00036 
25 1513 3.232 3.3024 0.3028 0.00044 
26 1541 3.221 3.2834 0.3046 0.00060 
27 1542 3.268 3.2827 0.3046 0.00061 
28 1468 3.359 3.3362 0.2997 0.00036 
29 1406 3.396 3.3894 0.2950 0.00042 
30 1467 3.290 3.3370 0.2997 0.00036 
31 1468 3.375 3.3362 0.2997 0.00036 
32 1494 3.387 3.3162 0.3016 0.00038 
33 1410 3.452 3.3858 0.2954 0.00041 
34 1426 3.480 3.3714 0.2966 0.00039 
35 1500 3.350 3.3118 0.3020 0.00040 
36 1508 3.351 3.3060 0.3025 0.00042 
37 1437 3.442 3.3618 0.2975 0.00038 
38 1451 3.426 3.3500 0.2985 0.00036 
39 1476 3.376 3.3299 0.3003 0.00036 
40 1449 3.378 3.3516 0.2984 0.00036 
41 1452 3.394 3.3491 0.2986 0.00036 
42 1509 3.325 3.3053 0.3025 0.00043 

95%PI 
Half- L95% U95% 
Width Predict Predict 

0.0915 3.1573 3.3404 
0.0919 3.1527 3.3365 
0.0902 3.2134 3.3938 
0.0901 3.1940 3.3741 
0.0924 3.1480 3.3329 
0.0904 3.1744 3.3552 
0.0926 3.1468 3.3320 
0.0942 3.1358 3.3242 
0.1098 3.4938 3.7134 
0.0979 3.4047 3.6006 
0.1011 3.4375 3.6396 
0.0945 3.3479 3.5368 
0.1023 3.4476 3.6522 
0.1049 3.4665 3.6763 
0.1035 3.4565 3.6635 
0.0905 3.2296 3.4106 
0.0902 3.2167 3.3971 
0.0901 3.2027 3.3828 
0.0903 3.2209 3.4016 
0.0908 3.2414 3.4230 
0.0901 3.1886 3.3688 
0.0901 3.2091 3.3894 
0.0901 3.2059 3.3861 
0.0909 3.2447 3.4264 
0.0902 3.2123 3.3927 
0.0900 3.1929 3.3730 
0.0901 3.1929 3.3731 
0.0909 3.2457 3.4276 
0.0925 3.2973 3.4824 
0.0909 3.2457 3.4276 
0.0909 3.2457 3.4276 
0.0904 3.2253 3.4060 
0.0924 3.2929 3.4776 
0.0919 3.2796 3.4635 
0.0903 3.2210 3.4016 
0.0902 3.2156 3.3960 
0.0916 3.2697 3.4530 
0.0913 3.2588 3.4414 
0.0907 3.2393 3.4207 
0.0913 3.2599 3.4425 
0.0913 3.2577 3.4402 
0.0902 3.2156 3.3960 
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95%PI 
Half- L95% U95% 

Obs Thick Resist Pred Xbeta Std Width Predict Predict 

43 1436 3.345 3.3627 0.2974 0.00038 0.0917 3.2708 3.4541 
44 1375 3.497 3.4192 0.2925 0.00050 0.0935 3.3253 3.5123 
45 1392 3.456 3.4026 0.2939 0.00045 0.0929 3.3096 3.4955 
46 1461 3.425 3.3418 0.2992 0.00036 0.0911 3.2512 3.4333 
47 1446 3.444 3.3541 0.2981 0.00037 0.0914 3.2631 3.4460 
48 1428 3.368 3.3696 0.2968 0.00039 0.0919 3.2774 3.4612 
49 1435 3.425 3.3635 0.2973 0.00038 0.0917 3.2719 3.4553 
50 1458 3.394 3.3442 0.2990 0.00036 0.0911 3.2533 3.4356 
51 1460 3.347 3.3426 0.2992 0.00036 0.0911 3.2512 3.4333 
52 1452 3.400 3.3491 0.2986 0.00036 0.0913 3.2577 3.4402 
53 1421 3.430 3.3758 0.2962 0.00040 0.0921 3.2840 3.4682 
54 1436 3.395 3.3627 0.2974 0.00038 0.0917 3.2708 3.4541 
55 1528 3.273 3.2920 0.3038 0.00052 0.0900 3.2016 3.3817 
56 1482 3.329 3.3252 0.3007 0.00036 0.0906 3.2349 3.4162 
57 1493 3.317 3.3169 0.3015 0.00038 0.0904 3.2263 3.4072 
58 1451 3.350 3.3500 0.2985 0.00036 0.0913 3.2588 3.4414 
59 1457 3.370 3.3450 0.2990 0.00036 0.0911 3.2533 3.4356 
60 1442 3.371 3.3575 0.2978 0.00037 0.0915 3.2664 3.4495 
61 1410 3.432 3.3858 0.2954 0.00041 0.0924 3.2929 3.4776 
62 1456 3.345 3.3458 0.2989 0.00036 0.0912 3.2544 3.4368 
63 1474 3.340 3.3314 0.3002 0.00036 0.0908 3.2403 3.4219 
64 1448 3.350 3.3525 0.2983 0.00037 0.0914 3.2610 3.4437 
65 1491 3.313 3.3184 0.3013 0.00038 0.0905 3.2285 3.4094 
66 1478 3.424 3.3283 0.3005 0.00036 0.0907 3.2371 3.4185 
67 1416 3.431 3.3803 0.2958 0.00040 0.0922 3.2884 3.4729 
68 1402 3.434 3.3932 0.2947 0.00043 0.0926 3.3006 3.4859 
69 1491 3.320 3.3184 0.3013 0.00038 0.0905 3.2285 3.4094 
70 1444 3.330 3.3558 0.2980 0.00037 0.0915 3.2642 3.4472 
71 1486 3.305 3.3222 0.3010 0.00037 0.0905 3.2317 3.4128 
72 1474 3.330 3.3314 0.3002 0.00036 0.0908 3.2403 3.4219 
73 1442 3.380 3.3575 0.2978 0.00037 0.0915 3.2664 3.4495 
74 1459 3.318 3.3434 0.2991 0.00036 0.0911 3.2523 3.4345 
75 1459 3.400 3.3434 0.2991 0.00036 0.0911 3.2523 3.4345 
76 1506 3.280 3.3074 0.3024 0.00042 0.0902 3.2167 3.3971 
77 1467 3.326 3.3370 0.2997 0.00036 0.0909 3.2457 3.4276 
78 1471 3.457 3.3338 0.3000 0.00036 0.0908 3.2425 3.4242 
79 1495 3.300 3.3154 0.3016 0.00039 0.0904 3.2252 3.4061 
80 1497 3.297 3.3140 0.3018 0.00039 0.0903 3.2231 3.4038 
81 1444 3.394 3.3558 0.2980 0.00037 0.0915 3.2642 3.4472 
82 1483 3.329 3.3245 0.3008 0.00037 0.0906 3.2339 3.4151 
83 1420 3.305 3.3767 0.2961 0.00040 0.0921 3.2851 3.4694 
84 1464 3.308 3.3394 0.2995 0.00036 0.0910 3.2479 3.4299 
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95%PI 
Half- L95% U95% 

Obs Thick Resist Pred Xbeta Std Width Predict Predict 

85 1458 3.342 3.3442 0.2990 0.00036 0.0911 3.2533 3.4356 
86 1453 3.327 3.3483 0.2987 0.00036 0.0912 3.2566 3.4391 
87 1440 3.380 3.3592 0.2977 0.00037 0.0916 3.2675 3.4507 
88 1475 3.299 3.3306 0.3002 0.00036 0.0908 3.2403 3.4219 
89 1453 3.340 3.3483 0.2987 0.00036 0.0912 3.2566 3.4391 
90 1444 3.301 3.3558 0.2980 0.00037 0.0915 3.2642 3.4472 
91 1417 3.329 3.3794 0.2959 0.00040 0.0922 3.2873 3.4717 
92 1396 3.375 3.3988 0.2942 0.00044 0.0928 3.3062 3.4919 
93 1367 3.424 3.4273 0.2918 0.00053 0.0938 3.3332 3.5208 
94 1501 3.291 3.3110 0.3020 0.00040 0.0903 3.2209 3.4016 
95 1406 3.399 3.3894 0.2950 0.00042 0.0925 3.2973 3.4824 
96 1394 3.428 3.4007 0.2941 0.00045 0.0929 3.3073 3.4931 
97 1410 3.369 3.3858 0.2954 0.00041 0.0924 3.2929 3.4776 
98 1391 3.395 3.4036 0.2938 0.00045 0.0930 3.3107 3.4967 
99 1445 3.332 3.3550 0.2981 0.00037 0.0914 3.2631 3.4460 
100 1490 3.383 3.3192 0.3013 0.00038 0.0905 3.2285 3.4094 
101 1460 3.325 3.3426 0.2992 0.00036 0.0911 3.2512 3.4333 
102 1424 3.352 3.3731 0.2965 0.00039 0.0920 3.2807 3.4647 
103 1424 3.355 3.3731 0.2965 0.00039 0.0920 3.2807 3.4647 
104 1452 3.346 3.3491 0.2986 0.00036 0.0913 3.2577 3.4402 
105 1425 3.355 3.3723 0.2965 0.00039 0.0920 3.2807 3.4647 
106 1446 3.336 3.3541 0.2981 0.00037 0.0914 3.2631 3.4460 
107 1411 3.398 3.3848 0.2954 0.00041 0.0924 3.2929 3.4776 
108 1455 3.321 3.3467 0.2988 0.00036 0.0912 3.2555 3.4379 
109 1442 3.344 3.3575 0.2978 0.00037 0.0915 3.2664 3.4495 
110 1415 3.379 3.3812 0.2958 0.00041 0.0922 3.2884 3.4729 
111 1398 3.416 3.3969 0.2944 0.00044 0.0928 3.3040 3.4895 
112 1415 3.380 3.3812 0.2958 0.00041 0.0922 3.2884 3.4729 
113 1417 3.376 3.3794 0.2959 0.00040 0.0922 3.2873 3.4717 
114 1396 3.399 3.3988 0.2942 0.00044 0.0928 3.3062 3.4919 
115 1378 3.420 3.4163 0.2927 0.00049 0.0934 3.3230 3.5099 
116 1357 3.460 3.4375 0.2909 0.00057 0.0943 3.3433 3.5319 
117 1410 3.370 3.3858 0.2954 0.00041 0.0924 3.2929 3.4776 
118 1396 3.407 3.3988 0.2942 0.00044 0.0928 3.3062 3.4919 
119 1378 3.441 3.4163 0.2927 0.00049 0.0934 3.3230 3.5099 
120 1410 3.399 3.3858 0.2954 0.00041 0.0924 3.2929 3.4776 
121 1418 3.395 3.3785 0.2960 0.00040 0.0922 3.2862 3.4705 
122 1411 3.408 3.3848 0.2954 0.00041 0.0924 3.2929 3.4776 
123 1408 3.404 3.3876 0.2952 0.00042 0.0924 3.2951 3.4800 
124 1408 3.404 3.3876 0.2952 0.00042 0.0924 3.2951 3.4800 
125 1408 3.404 3.3876 0.2952 0.00042 0.0924 3.2951 3.4800 
126 1408 3.404 3.3876 0.2952 0.00042 0.0924 3.2951 3.4800 
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95%PI 
Half- L95% U95% 

Obs Thick Resist   Pred    Xbeta      Std Width Predict Predict 

127 1407 3.370 3.3885 0.2951 0.00042 0.0925 3.2962 3.4812 
128 1479 3.285 3.3275 0.3005 0.00036 0.0907 3.2371 3.4185 
129 1395 3.407 3.3998 0.2941 0.00045 0.0929 3.3073 3.4931 
130 1354 3.350 3.4407 0.2906 0.00058 0.0944 3.3468 3.5356 
131 1394 3.407 3.4007 0.2941 0.00045 0.0929 3.3073 3.4931 
132 1495 3.263 3.3154 0.3016 0.00039 0.0904 3.2252 3.4061 
133 1434 3.335 3.3644 0.2972 0.00038 0.0917 3.2730 3.4565 
134 1523 3.278 3.2954 0.3034 0.00049 0.0901 3.2059 3.3861 
135 1510 3.243 3.3045 0.3026 0.00043 0.0902 3.2145 3.3949 
136 1450 3.305 3.3508 0.2984 0.00036 0.0913 3.2599 3.4425 
137 1452 3.319 3.3491 0.2986 0.00036 0.0913 3.2577 3.4402 
138 1556 3.191 3.2738 0.3055 0.00072 0.0902 3.1832 3.3635 
139 1487 3.265 3.3214 0.3011 0.00037 0.0905 3.2306 3.4117 
140 1474 3.372 3.3314 0.3002 0.00036 0.0908 3.2403 3.4219 
141 1496 3.260 3.3147 0.3017 0.00039 0.0904 3.2242 3.4049 
142 1550 3.232 3.2776 0.3051 0.00067 0.0901 3.1875 3.3677 
143 1532 3.292 3.2893 0.3040 0.00054 0.0900 3.1994 3.3795 
144 1456 3.330 3.3458 0.2989 0.00036 0.0912 3.2544 3.4368 
145 1466 3.330 3.3378 0.2996 0.00036 0.0910 3.2468 3.4287 
146 1512 3.300 3.3031 0.3027 0.00044 0.0902 3.2134 3.3938 
147 1458 3.330 3.3442 0.2990 0.00036 0.0911 3.2533 3.4356 
148 1463 3.311 3.3402 0.2994 0.00036 0.0910 3.2490 3.4310 
149 1449 3.317 3.3516 0.2984 0.00036 0.0913 3.2599 3.4425 
150 1536 3.231 3.2867 0.3043 0.00057 0.0900 3.1962 3.3763 
151 1526 3.220 3.2934 0.3036 0.00051 0.0901 3.2037 3.3839 
152 1455 3.319 3.3467 0.2988 0.00036 0.0912 3.2555 3.4379 
153 1443 3.310 3.3567 0.2979 0.00037 0.0915 3.2653 3.4483 
154 1452 3.320 3.3491 0.2986 0.00036 0.0913 3.2577 3.4402 
155 1506 3.261 3.3074 0.3024 0.00042 0.0902 3.2167 3.3971 
156 1460 3.255 3.3426 0.2992 0.00036 0.0911 3.2512 3.4333 
157 1450 3.322 3.3508 0.2984 0.00036 0.0913 3.2599 3.4425 
158 1540 3.249 3.2840 0.3045 0.00060 0.0901 3.1940 3.3741 
159 1460 3.303 3.3426 0.2992 0.00036 0.0911 3.2512 3.4333 
160 1497 3.250 3.3140 0.3018 0.00039 0.0903 3.2231 3.4038 
161 1536 3.240 3.2867 0.3043 0.00057 0.0900 3.1962 3.3763 
162 1468 3.303 3.3362 0.2997 0.00036 0.0909 3.2457 3.4276 



CHAPTER 5 

MONITORING UNIFORMITY ACROSS PROCESS ZONES AND CHANGING 
PRODUCT SPECIFICATIONS USING REGRESSION ADJUSTED VARIABLES 

Introduction 

In some manufacturing processes, large capacity equipment may have several 

zones, with slight differences between zones adding an additional source of variability. 

An important objective is ensuring that uniformity between zones is maintained to the 

highest possible extent. Furthermore, due to product delivery schedules, it may not be 

feasible to dedicate a single machine to a particular product formulation. Process 

attributes may need to be adjusted from run to run to meet target product specifications. 

Considering each zone as a variable, scenarios where it is likely that a loss of 

uniformity occurs in a single zone at a time fit the key assumption made by 

Hawkins (1991) in proposing process monitoring with regression adjusted variables. 

While this method was shown to have degraded performance when simultaneous shifts of 

similar size in correlated variables occured, this situation does not represent a loss of 

uniformity. With uniformity as a principle interest, it is desirable to detect model-void 

shifts quickly. 

Due to possible changes in product specification between runs, the regression 

adjustment must involve additional terms indicating which product specification is 

associated with the zone thickness measurements. The interest in this chapter is in 

forming a single model for each zone that assesses uniformity with respect to the other 

zones, and provides information on possible uniformity dispersion effects with respect to 

the product specification. 
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Example 

A particular semi-conductor diffusion furnace has three zones defined by 

proximity to separate heating elements within the furnace. A single large heating element 

is insufficient to provide uniform heating throughout the furnace interior. Layer thickness 

in each zone is an important measure observed after furnace run completion. There are 

several possible mechanisms that may cause the thickness observed in one zone to move 

away from that observed in the other zones. A degraded thermocouple, controller 

channel, or heating element may result in a non-uniform temperature between one zone 

and the others. Furthermore, depending on the product loaded the desired thickness may 

be 400, 1400, 1500, or 2500 times a constant measurement unit. For convenience, 

product formulation specifications will be referred to as "recipes." 

To represent four recipes, three indicator variables are required as regressors in 

each model in addition to the two continuous variables representing the other two zones. 

The models are: 

x, =ß1d1+ß2d2+ß3d3+ß4x2+ß5x3+s 

*2  =p6dl  + ß7
d2  +ßsd3+ß9Xl  + ß,0X3+S 

X3  =ßlldl  +ßl2d2 + ß,3d3 +ßl4Xl  +ßl5
X2 +£ 

where Xj = Thickness in Zone i and the indicator variables, dj, are coded such that: 

(5-1) 

Recipe di d2 d3 

400 0 0 0 
1400 1 0 0 
1500 0 1 0 
2500 0 0 1 
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A total of 894 observations of each zone thickness are available: 186 from the 400 

recipe, 516 from the 1400 recipe, 57 from the 1500 recipe, and 135 from the 2500 recipe 

(the raw data is included in Appendix 5.A). Observations identified as nonconforming by 

process engineers were eliminated from the originally provided data set — the intent being 

to assess variability in uniformity even when process is thought to be in a good state. 

The fitted equations (using least squares estimates) associated with the models in 

(5-1) are: 

x, = 1.82(1, + 17.3d2 + 44.9d3 + 0.32x2 + 0.67x3 

x2 = 16.8(1, +9.0d2 +20.0d3 +0.15x, +0.85x3 (5-2) 

x3 =-7.37d, -6.27d2 -21.1d3 +0.27x, +0.74x2 

Figure 5-1 contains a boxplot of the zone 1 residuals (xi- x,) grouped by recipe, 

which shows an interesting process phenomenon — since these residuals represent zone 

one departure from its usual relationship to zones two and three, we see a recipe 

dispersion effect in uniformity, especially for the 1400 recipe. In this process it may be 

reasonable to expect larger variability within a zone as the target thickness increases, and 

hence perhaps a tendency to observe this across zones as well; but the dispersion effect 

for the 1400 recipe seems to violate the more mild tendency for this to happen when the 

progression from 400 to 1500 to 2500 is observed. Possible causes for the excess 

uniformity dispersion in the 1400 recipe level should be investigated. 

Figure 2 contains confidence intervals around the residual variance estimates as 

well as a Bartlett's test for Homogeneity of variance, indicating the dispersion effect 

noticed in Figure 1 is statistically significant. 
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Figure 5-1. Box and whisker plots of zone one residuals by recipe. 

Homogeneity of Variance Test for: RESI1 

95% Confidence lntei\als for Sigmas                              Factor Le\«!s 

tm 400 

Bartlett's Test 

Test Statistic: 422.631 

• 1400 

1500 

p value      :   0.000 

Leone's Test 

Test Statistic: 71.186 

p value       : 0.000 

2500 
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Figure 5-2. Homogeneity of variance test for zone 1 residuals. 

Figures 5-3 and 5-4 show similar dispersion effects for zones two and three, respectively. 
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Figure 5-3. Box and whisker plots of zone two residuals by recipe. 
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Figure 5-4. Box and whisker plots of zone three residuals by recipe. 

Table 5-1 presents seven points from the process and clearly shows how the 

regression adjusted variables will operate. Observation number 18 shows a point that is 

very close to target in all three zones — the standardized residuals remain small as they 

should. 
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Observation 882 shows a situation where observed thicknesses in all three zones 

are smaller than usual but remain similar with respect to their usual relationship — the 

standardized residuals remain small since uniformity is maintained (though it's probably 

important to pick up a shift in the overall mean, a topic that will be discussed later). 

Observation 845 shows a situation where the zone one observation is substantially 

higher than the other zones - the standardized residual in zone 1 is very large (4.13) 

indicating the problem quite clearly. 

Observation 483 has zone 1 remaining near target, zone two moderately larger 

than target, and zone 3 substantially smaller than target — this situation is also accurately 

shown in the standardized residuals. 

A very interesting comparison is provided between observations 858 and 878. 

Both observations have two zones that are substantially lower than target (different two in 

each observation), with the remaining zone slightly above target — magnitudes are 

similar, only the zones involved are changed. Even so, the zone 3 standardized residual 

for observation 878 is much larger than the zone 1 residual for observation 858 — this is 

indicative of the historical relationship information between zones coming into play. 

Another important point lies in this comparison. The range across zones for observation 

858 is 1.6 times the range across zones for observation 878, yet observation 878 contains 

the largest standardized residual in any of the zones. This indicates regression-adjusted 

monitoring has the potential to be more sensitive than a range-based control method for 

this application. 
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Looking back over these examples, the regression adjusted variables detection 

ability is not just limited to single zone shifts, but depends on the violation of normal 

relationships between the zones — a mechanism very well suited to monitoring 

uniformity. 

In all cases shown, the standardized thickness indicate that all observations would 

be well inside control limits on univariate individuals control charts — separately charting 

the zone thickness would provide very little information on uniformity except under very 

large shifts. 

Other Considerations 

Observation 882 demonstrated that the residuals remain small when the overall 

mean thickness changes uniformly across zones. This situation is also important to 

detect. Using a T2, MCUSUM, or MEWMA "in parallel" with monitoring the regression 

adjusted variables would signal the uniform changes in the mean. To keep the number of 

charts being monitored to a minimum, a "ZNO" group chart presented by Hawkins (1991) 

(discussed in Chapter 2) could be used along with, for example, an MCUSUM. 

One disadvantage of monitoring with residuals from the model in (5-1) is that the 

residuals for zone one are not indepent of those for zones two and three. Simulation must 

be used to determine appropriate control chart parameters as discussed by 

Hawkins (1991). 

Least-squares regression requires assumptions of Constance variance. Once the 

dispersion problem associated with recipe 1400 was corrected, an increasing trend in 

dispersion would still be present based on observing the trend that existed between 
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recipes 400, 1500, and 2500. A variance stabilizing transformation should be used to 

correct the problem prior to fitting the models that will be used. 

Alternatively, one may standardize the observations, using the mean and standard 

deviation observed for each recipe within each zone. The models become: 

z, = ß,z2 + ß2z3 + s 

z2 =ß3z,+ß4z3+s (5-3) 

z3 =ß5z2 +ß6z2 +s 

x..    — X" 
where, zijk = — -for the ith zone, jth recipe and kth observation. Figure 5-5 contains 

h 

a boxplot of the zone one residuals formed in this manner grouped by recipe. This figure 

demonstrates that standardizing in the manner of (5-3) largely masks the dispersion 

effects. The residual variance confidence intervals and Bartlett's test in Figure 5-6 no 

longer indicate non-homogenous variance. While this may be a reasonable approach for 

continued monitoring once the dispersion has been reduced to an acceptable level, we 

would have missed the important information regarding the uniformity dispersion 

problem in recipe 1400 had we done this at the beginning. 

Summary and Conclusions 

Maintaining uniformity across equipment zones is an important process 

monitoring objective. Hawkins (1991) regresssion adjustment method was shown to be 

more sensitive to shifts that violate normal relationships between variables than were 

traditional methods applied to original observations. By treating zones as variables, 
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Figure 5-5. Box and whisker plot of zone one residuals from model 
using "recipe-standardized" variables. 

Homogeneity of Variance Test for: RESI4 

95%Confidence Intervals forSigmas                              FactorLevels 

Bartlett's Test 

Test Statistic: 3,737 

• 1400 
p value       : 0.291 

Levene's Test 

Test Statistic: 2.809 

p value       : 0.039 

1                1                1               1                1 
16          0.7          0.8          0.9           10 

Figure 5-6. Homogeneity of variance test for zone one residuals from 
model using "recipe-standardized" variables. 

monitoring zone uniformity fits well into Hawkins (1991) framework. Additional factors 

such as product specification "recipe" may be incorporated as additional covariates. 

Doing so clearly identified dispersion effects across recipe formulations that are masked 

when variables are standardized instead as a means for monitoring differing targets on the 

same machine. A significant disadvantage is that zone residuals are not independent of 
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each other, so simulation is required to determine appropriate control chart parameters. 

"Parallel" monitoring with a directionally invariant procedure such as a T , MCUSUM or 

MEWMA on raw measures is important for detecting an overall mean shift that occurs 

uniformly across all zones. 



APPENDIX 5.A 

Zone Thickness Data 

Obs Rec ZIThk Z2Thk Z3Thk Obs Rec ZIThk Z2Thk Z3Thk 

1 1500 1462.70 1445.60 1444.30 46 1400 1430.50 1408.30 1405.30 
2 1400 1398.30 1384.10 1375.20 47 1400 1429.30 1408.00 1404.30 
3 1400 1399.00 1380.50 1369.80 48 1400 1411.80 1405.80 1408.30 
4 1400 1403.00 1379.40 1367.30 49 1400 1406.80 1396.30 1401.10 
5 1400 1406.50 1379.10 1369.50 50 1400 1424.60 1396.60 1396.80 
6 1400 1421.10 1391.20 1396.10 51 1500 1499.20 1482.10 1482.50 
7 1400 1425.10 1393.10 1400.60 52 1500 1504.90 1487.20 1487.80 
8 1400 1418.80 1409.90 1414.70 53 1400 1408.70 1406.90 1407.80 
9 1500 1506.20 1488.40 1487.90 54 1400 1415.60 1391.80 1404.80 
10 1400 1413.30 1403.20 1409.00 55 1400 1421.20 1397.00 1418.90 
11 1400 1422.20 1402.20 1400.30 56 1400 1406.70 1392.80 1421.70 
12 1400 1407.80 1396.10 1392.00 57 1400 1400.50 1402.30 1414.40 
13 1400 1419.40 1408.50 1405.70 58 1400 1401.10 1394.80 1412.70 
14 1400 1406.90 1405.20 1407.90 59 1400 1398.40 1401.40 1410.10 
15 1400 1412.30 1412.50 1413.30 60 1400 1401.50 1391.90 1415.90 
16 1400 1411.40 1412.60 1415.70 61 1400 1396.50 1384.50 1407.60 
17 1400 1434.80 1420.80 1425.50 62 1400 1402.60 1383.80 1400.00 
18 400 395.47 397.13 399.32 63 1400 1390.20 1410.20 1390.00 
19 400 395.66 396.20 398.94 64 1400 1401.80 1389.30 1405.80 
20 400 397.83 396.35 399.62 65 400 387.04 388.75 392.36 
21 400 400.39 399.35 400.46 66 1500 1523.00 1508.60 1510.30 
22 1400 1443.00 1420.30 1423.10 67 1400 1394.20 1395.20 1402.70 
23 1500 1512.90 1492.60 1493.60 68 1400 1406.40 1398.80 1418.50 
24 1400 1434.60 1409.80 1419.90 69 1400 1405.70 1408.90 1416.00 
25 400 397.54 394.25 396.43 70 1400 1411.60 1390.30 1413.00 
26 1400 1446.00 1421.60 1423.00 71 2500 2469.60 2467.20 2485.50 
27 1400 1424.30 1401.10 1404.40 72 1400 1377.50 1381.10 1388.00 
28 1400 1425.30 1403.40 1405.00 73 1400 1403.10 1376.40 1384.10 
29 1500 1492.60 1476.20 1475.60 74 1400 1397.30 1388.10 1406.40 
30 1500 1497.90 1477.20 1474.80 75 1400 1392.70 1373.40 1410.50 
31 1500 1497.40 1476.40 1474.10 76 1400 1394.00 1373.60 1400.20 
32 1400 1422.40 1397.70 1399.90 77 400 384.02 384.30 388.47 
33 2500 2497.00 2482.00 2484.00 78 1400 1390.90 1377.40 1402.20 
34 1400 1427.50 1400.20 1398.70 79 1400 1384.90 1386.40 1394.70 
35 1400 1417.90 1401.00 1398.00 80 1400 1378.40 1382.60 1395.50 
36 1400 1416.20 1395.30 1395.60 81 1400 1372.80 1380.40 1397.40 
37 400 394.93 390.58 393.19 82 1400 1406.00 1385.90 1426.00 
38 400 398.45 398.01 399.79 83 400 402.51 404.07 414.08 
39 400 397.25 395.29 397.60 84 1400 1400.50 1402.90 1412.60 
40 400 397.31 395.57 397.65 85 1400 1414.40 1396.00 1415.30 
41 400 393.88 392.79 395.35 86 1400 1405.10 1391.30 1408.60 
42 400 392.25 392.07 395.30 87 1400 1401.40 1392.80 1411.00 
43 400 392.51 392.65 395.72 88 1400 1402.30 1393.50 1413.50 
44 1400 1404.10 1407.90 1431.70 89 1400 1407.90 1393.90 1411.70 
45 1400 1422.00 1405.30 1403.70 90 1400 1401.40 1387.00 1415.60 
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91 400 409.34 406.14 408.76 136 2500 2520.70 2490.10 2485.50 
92 1500 1489.70 1473.50 1482.40 137 1400 1397.10 1389.30 1386.70 
93 1400 1404.60 1385.70 1402.80 138 2500 2536.10 2521.20 2534.20 
94 1400 1402.40 1385.70 1401.80 139 400 403.67 402.82 402.88 
95 1400 1404.60 1393.60 1410.50 140 2500 2481.10 2462.10 2458.90 
96 1400 1386.80 1371.90 1395.00 141 1400 1403.40 1384.30 1388.60 
97 400 402.39 400.90 403.82 142 1400 1388.50 1383.60 1392.90 
98 1400 1391.40 1391.60 1394.20 143 400 406.26 406.28 407.32 
99 1400 1391.20 1375.00 1394.30 144 1400 1396.50 1395.10 1396.40 
100 2500 2451.20 2434.90 2447.00 145 1400 1402.10 1395.50 1397.80 
101 1400 1388.30 1391.10 1373.00 146 1400 1389.80 1389.40 1401.90 
102 1400 1410.00 1389.00 1402.00 147 1400 1364.90 1364.00 1379.20 
103 1400 1398.30 1383.30 1399.10 148 1500 1481.30 1473.40 1481.70 
104 1400 1404.20 1388.00 1410.00 149 1400 1401.70 1394.60 1396.50 
105 1400 1399.60 1374.40 1408.80 150 1400 1401.90 1394.70 1395.40 
106 400 403.30 405.58 409.31 151 1400 1400.70 1397.40 1400.90 
107 1400 1409.80 1397.30 1427.40 152 1400 1393.40 1385.10 1387.60 
108 1400 1394.20 1378.20 1420.80 153 400 401.53 400.91 401.80 
109 1400 1392.70 1388.50 1395.80 154 1400 1397.40 1382.70 1383.60 
110 1400 1390.90 1384.20 1390.40 155 2500 2460.40 2444.80 2443.60 
111 1400 1398.00 1388.50 1402.50 156 400 393.24 393.45 400.93 
112 1400 1403.30 1394.70 1400.60 157 1400 1395.70 1380.80 1382.40 
113 1500 1476.50 1472.70 1488.20 158 1400 1390.80 1373.90 1375.80 
114 1400 1390.60 1386.60 1416.10 159 1400 1389.30 1383.50 1392.20 
115 1400 1390.00 1391.00 1405.40 160 400 391.51 396.73 405.70 
116 1400 1397.90 1391.70 1402.60 161 1400 1389.60 1378.60 1393.10 
117 2500 2517.40 2497.40 2514.60 162 1400 1391.70 1385.00 1394.10 
118 400 396.00 397.00 404.94 163 1400 1395.00 1386.50 1398.80 
119 1400 1399.60 1385.00 1392.80 164 1400 1391.60 1384.00 1391.50 
120 1400 1382.10 1398.70 1407.00 165 1400 1397.00 1396.70 1395.60 
121 1400 1393.90 1392.40 1406.50 166 1400 1398.40 1396.70 1398.60 
122 2500 2482.10 2465.50 2471.30 167 2500 2484.80 2462.20 2457.10 
123 1400 1393.90 1386.50 1394.80 168 1400 1401.40 1392.60 1389.50 
124 1400 1394.30 1389.90 1397.40 169 1400 1403.20 1395.30 1393.10 
125 2500 2484.60 2464.80 2468.70 170 1400 1385.70 1381.70 1390.00 
126 1400 1397.20 1393.30 1391.20 171 400 402.22 401.05 402.81 
127 1400 1394.10 1388.00 1394.10 172 1400 1399.00 1385.80 1383.10 
128 1400 1403.50 1395.90 1396.40 173 400 404.90 402.65 403.88 
129 400 405.81 403.56 406.33 174 2500 2475.30 2457.70 2451.50 
130 1400 1401.00 1389.30 1391.70 175 1400 1397.90 1386.80 1384.60 
131 1400 1398.30 1390.60 1394.40 176 1500 1483.80 1473.50 1487.70 
132 1500 1501.30 1487.50 1495.30 177 1400 1384.20 1392.90 1393.00 
133 400 406.99 405.72 408.07 178 2500 2505.40 2482.20 2497.20 
134 400 408.59 407.20 410.03 179 2500 2479.50 2463.50 2465.40 
135 2500 2497.10 2473.80 2468.60 180 1400 1389.60 1386.40 1391.00 
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181 1400 1381.10 1384.40 1391.80 226 1400 1399.90 1412.00 1408.50 
182 1400 1387.20 1388.90 1395.80 227 1400 1393.20 1406.60 1396.70 
183 1400 1386.60 1389.20 1393.40 228 1500 1501.50 1496.60 1503.50 
184 1400 1387.70 1385.70 1388.80 229 1400 1397.60 1413.80 1400.60 
185 1400 1384.00 1378.90 1384.50 230 1400 1390.50 1415.60 1415.80 
186 400 402.38 401.72 403.08 231 1400 1387.70 1418.00 1417.80 
187 1400 1376.80 1375.40 1385.90 232 400 405.01 397.07 406.84 
188 1400 1386.30 1382.30 1390.60 233 400 404.13 402.93 409.59 
189 1400 1386.70 1378.40 1389.40 234 1400 1414.50 1408.00 1395.90 
190 1400 1373.90 1371.40 1375.10 235 400 402.91 400.93 410.04 
191 1400 1371.90 1368.50 1375.30 236 400 410.13 403.84 409.26 
192 400 403.74 402.30 405.61 237 1400 1406.90 1426.50 1434.70 
193 1400 1380.30 1372.10 1375.40 238 1400 1408.80 1419.40 1417.70 
194 1400 1382.10 1373.30 1378.10 239 1400 1405.40 1424.90 1422.80 
195 1400 1378.70 1368.10 1372.30 240 1400 1404.40 1425.20 1430.60 
196 1400 1374.10 1369.80 1372.40 241 1500 1489.00 1476.70 1473.80 
197 400 399.97 398.90 402.11 242 1400 1399.90 1417.30 1414.80 
198 1400 1375.50 1371.40 1375.00 243 2500 2520.20 2499.20 2487.50 
199 2500 2447.90 2433.20 2427.80 244 1400 1397.50 1411.50 1411.10 
200 1400 1377.40 1368.20 1373.00 245 1500 1489.10 1483.70 1479.60 
201 2500 2452.60 2432.30 2425.30 246 1400 1401.60 1410.50 1410.20 
202 1400 1384.50 1376.90 1383.10 247 1400 1376.50 1421.60 1412.60 
203 1500 1462.50 1453.10 1457.80 248 1400 1371.30 1420.00 1405.50 
204 1400 1382.60 1373.00 1370.80 249 1500 1494.50 1491.50 1492.70 
205 1400 1383.90 1374.80 1372.30 250 400 404.53 399.26 407.16 
206 400 408.29 406.44 406.56 251 2500 2493.80 2472.70 2465.50 
207 1400 1407.80 1400.70 1401.10 252 1400 1372.90 1414.80 1404.30 
208 1400 1414.00 1409.30 1405.20 253 1400 1377.40 1416.50 1406.40 
209 1400 1408.30 1399.10 1394.20 254 1400 1384.10 1424.10 1426.80 
210 2500 2494.60 2477.30 2467.80 255 1400 1434.40 1408.00 1412.50 
211 1400 1403.40 1398.40 1396.10 256 1400 1375.30 1419.40 1409.00 
212 400 403.46 401.50 402.06 257 400 409.26 397.59 404.40 
213 1400 1399.10 1385.10 1388.70 258 1400 1378.20 1420.70 1413.20 
214 2500 2514.60 2490.00 2480.20 259 1400 1370.00 1417.40 1403.00 
215 2500 2500.70 2476.10 2464.80 260 1400 1377.50 1414.00 1392.50 
216 400 401.40 399.00 399.09 261 1400 1383.90 1438.60 1425.60 
217 1400 1388.10 1376.80 1370.70 262 1400 1384.90 1434.10 1428.90 
218 1400 1384.80 1373.60 1367.60 263 1400 1382.00 1435.20 1426.90 

219 400 400.29 397.01 398.26 264 400 412.13 404.00 409.00 

220 2500 2498.50 2478.30 2472.50 265 1400 1377.80 1435.80 1427.60 

221 1400 1377.30 1370.10 1368.70 266 2500 2535.80 2512.40 2506.80 
222 1400 1437.50 1401.60 1395.70 267 1400 1432.90 1423.10 1416.10 

223 400 401.81 395.57 401.50 268 400 403.03 400.28 401.13 
224 1400 1388.20 1415.10 1403.30 269 1400 1407.70 1403.40 1403.10 

225 1400 1398.00 1412.50 1401.80 270 400 404.11 401.63 403.92 
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271 400 405.79 401.16 407.05 316 1400 1367.40 1414.30 1393.30 
272 2500 2531.80 2511.70 2506.20 317 1400 1405.00 1444.00 1422.00 
273 400 405.02 402.19 406.68 318 1400 1392.00 1437.00 1407.00 
274 1400 1438.90 1427.80 1420.80 319 1400 1411.90 1408.00 1407.90 
275 1400 1367.00 1402.90 1391.20 320 1400 1408.20 1404.00 1404.20 
276 400 401.90 399.17 400.54 321 2500 2523.30 2486.40 2479.50 
277 1400 1386.20 1429.10 1419.70 322 1400 1361.70 1417.10 1409.60 
278 1400 1390.80 1444.90 1445.80 323 1400 1363.80 1420.20 1399.90 
279 1400 1387.00 1429.10 1410.60 324 1400 1365.80 1425.30 1397.60 
280 1400 1446.30 1432.10 1431.60 325 400 397.74 403.30 407.25 
281 1400 1436.30 1424.20 1420.20 326 1400 1355.30 1419.20 1394.60 
282 400 408.58 406.86 407.60 327 2500 2531.90 2488.90 2481.20 
283 2500 2551.90 2527.90 2522.40 328 1400 1426.10 1416.30 1413.80 
284 1400 1420.30 1413.80 1412.50 329 1500 1511.00 1518.50 1509.30 
285 1500 1492.30 1503.80 1498.00 330 1400 1428.10 1421.00 1417.60 
286 2500 2548.70 2526.00 2520.50 331 400 402.33 411.18 404.93 
287 1500 1481.20 1469.80 1469.20 332 1400 1366.00 1420.50 1390.80 
288 1400 1378.40 1431.90 1413.20 333 1400 1416.40 1419.80 1412.10 
289 1400 1385.20 1430.50 1416.80 334 1400 1429.50 1421.20 1402.90 
290 1400 1435.80 1427.20 1418.80 335 1400 1412.80 1414.10 1406.70 
291 1500 1521.80 1513.30 1520.40 336 1500 1507.00 1511.60 1499.50 
292 1400 1386.00 1429.60 1407.30 337 400 397.01 408.19 403.81 
293 1400 1381.00 1435.50 1418.70 338 1400 1428.90 1421.80 1401.20 
294 1500 1536.80 1533.40 1533.30 339 1500 1501.80 1511.50 1497.20 

295 1400 1386.10 1439.30 1431.90 340 1500 1497.90 1497.50 1490.70 
296 1400 1444.60 1424.60 1422.80 341 2500 2521.40 2507.80 2498.20 
297 1400 1444.40 1428.90 1420.20 342 400 395.56 408.03 400.80 
298 400 408.97 404.39 408.19 343 1400 1407.00 1411.30 1402.20 
299 1400 1389.30 1431.80 1415.90 344 1400 1413.90 1423.70 1410.50 

300 1400 1375.70 1418.30 1415.30 345 1400 1431.00 1425.80 1412.10 
301 400 395.48 396.71 402.57 346 400 400.66 411.01 403.72 

302 1400 1372.90 1420.20 1399.40 347 1400 1414.20 1418.90 1405.70 

303 1400 1375.70 1431.20 1436.20 348 1400 1422.30 1422.80 1405.50 

304 1400 1372.90 1417.10 1397.40 349 400 391.98 404.90 403.00 

305 2500 2549.30 2525.20 2514.00 350 1400 1418.10 1421.10 1409.00 

306 1400 1367.80 1413.90 1386.90 351 1400 1400.90 1407.10 1397.80 

307 1400 1375.90 1413.60 1394.50 352 1500 1491.70 1498.70 1504.60 

308 1400 1366.20 1413.40 1400.50 353 1400 1432.20 1426.20 1397.00 

309 1400 1366.60 1413.00 1396.70 354 2500 2515.40 2481.40 2470.90 

310 1400 1377.10 1422.20 1396.10 355 400 391.58 406.46 399.32 

311 1400 1366.90 1413.00 1395.70 356 1400 1415.90 1422.60 1407.80 

312 1400 1365.20 1411.80 1395.20 357 1400 1353.20 1416.40 1392.20 

313 1400 1374.10 1435.30 1456.30 358 1500 1495.50 1498.50 1500.10 

314 1500 1517.40 1502.70 1496.90 359 1400 1422.40 1421.60 1408.10 

315 2500 2530.20 2488.00 2481.60 360 2500 2530.80 2514.40 2493.80 
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361 400 404.80 404.79 406.68 406 1400 1359.70 1415.70 1391.60 
362 1400 1427.90 1418.70 1412.30 407 1400 1435.40 1428.60 1413.80 
363 1400 1423.90 1412.70 1410.30 408 1400 1364.90 1418.90 1402.30 
364 400 394.27 396.36 402.11 409 2500 2515.90 2501.60 2476.40 
365 1400 1424.70 1413.00 1414.90 410 400 400.86 410.56 403.94 
366 1500 1515.90 1502.40 1507.90 411 1400 1356.90 1418.10 1392.00 
367 1400 1426.00 1416.90 1410.60 412 1400 1353.30 1418.80 1394.90 
368 1400 1423.70 1416.40 1412.30 413 1400 1419.40 1414.30 1406.20 
369 1400 1361.20 1418.90 1390.60 414 1400 1425.40 1419.50 1409.10 
370 1500 1507.10 1513.30 1501.00 415 2500 2523.30 2499.70 2473.00 
371 1500 1520.30 1523.90 1520.10 416 1400 1358.60 1413.90 1390.00 
372 1400 1411.90 1408.90 1404.80 417 1400 1366.40 1428.40 1399.70 
373 1400 1427.90 1420.40 1417.80 418 2500 2522.80 2488.30 2477.60 
374 2500 2543.20 2524.50 2510.60 419 400 394.19 409.55 399.37 
375 1400 1426.60 1414.30 1409.60 420 1400 1431.20 1439.50 1410.50 
376 1400 1357.80 1412.90 1393.80 421 1400 1432.60 1434.40 1412.70 
377 1400 1427.40 1420.40 1410.60 422 1400 1427.00 1428.60 1410.40 
378 1400 1420.50 1410.00 1408.50 423 2500 2525.00 2507.10 2478.90 
379 1400 1363.50 1422.00 1413.00 424 1400 1366.90 1425.70 1393.40 
380 1500 1502.00 1501.00 1485.30 425 1400 1357.10 1421.80 1394.10 
381 2500 2530.80 2516.40 2501.50 426 1400 1354.50 1426.20 1389.10 
382 1400 1359.30 1417.80 1408.70 427 1400 1358.60 1418.50 1388.00 
383 1500 1505.30 1511.90 1512.70 428 1400 1404.60 1408.50 1390.30 
384 1400 1409.00 1411.40 1405.50 429 1400 1423.50 1415.80 1410.90 
385 2500 2525.60 2511.30 2498.00 430 1400 1430.10 1420.40 1411.00 
386 1400 1357.80 1415.40 1398.90 431 1400 1358.00 1418.60 1402.40 
387 2500 2527.50 2511.00 2496.50 432 1400 1361.70 1412.80 1392.20 
388 1400 1416.90 1418.60 1408.90 433 2500 2524.60 2499.60 2481.50 
389 1400 1429.80 1421.30 1412.00 434 1400 1363.60 1413.50 1402.50 
390 1400 1425.60 1417.50 1408.20 435 2500 2521.00 2492.50 2480.00 
391 1400 1427.30 1426.90 1419.10 436 400 392.23 401.06 398.66 
392 1400 1419.00 1416.10 1394.70 437 1500 1504.10 1504.20 1494.00 
393 1400 1422.70 1418.00 1411.80 438 1400 1362.10 1418.00 1407.40 
394 400 392.45 398.69 400.53 439 1500 1503.10 1501.60 1492.10 
395 1400 1363.80 1415.70 1388.70 440 2500 2524.10 2486.60 2473.20 
396 1400 1366.20 1420.00 1390.10 441 1400 1358.40 1416.20 1411.20 
397 1400 1421.60 1419.00 1410.90 442 1400 1356.00 1421.50 1388.90 
398 1400 1362.70 1415.20 1388.10 443 1400 1358.60 1418.00 1393.70 
399 2500 2529.40 2508.60 2500.90 444 1500 1509.20 1508.50 1503.50 
400 1400 1424.10 1414.20 1410.40 445 2500 2524.00 2501.10 2478.50 
401 1400 1422.30 1424.50 1414.80 446 1400 1354.70 1411.70 1389.30 
402 1400 1433.60 1427.10 1415.10 447 1500 1503.50 1500.40 1491.90 
403 1400 1429.30 1428.50 1420.00 448 400 395.73 404.07 403.54 
404 1400 1426.10 1426.00 1406.50 449 1400 1368.70 1428.00 1418.70 
405 2500 2528.60 2504.70 2479.20 450 1400 1366.30 1424.10 1397.90 
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451 1400 1360.80 1419.40 1387.90 496 1400 1371.10 1423.70 1400.70 
452 1400 1360.80 1412.90 1386.50 497 400 399.85 407.36 409.00 
453 1400 1364.90 1412.30 1391.40 498 1400 1374.20 1425.30 1397.60 
454 1400 1360.20 1413.10 1388.80 499 400 395.85 405.76 406.27 
455 400 395.41 401.57 400.06 500 1400 1378.50 1429.70 1398.10 
456 2500 2515.30 2498.40 2477.60 501 2500 2547.20 2528.30 2513.10 
457 1400 1360.90 1418.90 1385.90 502 400 400.35 412.21 410.15 
458 1400 1357.10 1418.90 1390.00 503 2500 2506.80 2530.70 2546.70 
459 2500 2524.70 2493.00 2472.80 504 1400 1397.70 1460.50 1458.80 
460 1400 1367.50 1425.10 1396.30 505 1400 1394.50 1452.80 1459.50 
461 1400 1407.30 1405.40 1397.60 506 1400 1371.70 1432.50 1441.30 
462 2500 2510.80 2491.90 2480.50 507 1400 1336.30 1399.00 1400.70 
463 1400 1356.50 1419.20 1390.10 508 1400 1347.50 1413.10 1426.60 
464 400 388.10 396.01 399.88 509 1400 1343.80 1401.00 1391.40 
465 1400 1359.00 1412.10 1390.30 510 2500 2477.00 2475.50 2507.10 
466 400 391.94 398.70 402.16 511 1400 1353.60 1412.60 1418.20 
467 1400 1352.10 1418.30 1388.80 512 1500 1497.50 1495.30 1506.10 
468 1400 1357.80 1416.60 1386.60 513 1400 1352.90 1415.40 1415.90 
469 400 393.80 404.36 399.55 514 2500 2474.80 2468.50 2476.10 
470 1400 1357.10 1415.40 1388.70 515 1400 1324.10 1390.70 1370.30 
471 400 391.93 404.02 401.19 516 1400 1337.90 1393.00 1384.40 
472 1400 1359.60 1418.80 1386.90 517 1400 1347.00 1412.60 1409.60 
473 2500 2510.90 2489.40 2467.90 518 2500 2477.60 2442.50 2458.10 
474 1400 1354.90 1414.50 1376.80 519 1500 1500.60 1488.10 1495.30 
475 1400 1358.70 1414.30 1383.80 520 1400 1346.30 1391.10 1391.00 
476 1400 1359.30 1410.60 1398.20 521 1400 1354.90 1398.90 1403.10 
477 1400 1398.80 1391.70 1377.50 522 1500 1514.10 1521.80 1528.80 
478 1400 1354.00 1414.20 1392.80 523 1400 1330.90 1379.00 1361.60 
479 2500 2505.10 2495.90 2481.20 524 400 402.45 403.28 404.22 
480 1400 1407.90 1411.50 1388.80 525 1400 1393.50 1396.20 1345.60 
481 1400 1411.60 1401.70 1388.50 526 1500 1489.00 1480.80 1480.50 
482 1400 1403.80 1403.80 1391.50 527 1400 1332.10 1374.60 1360.20 
483 1400 1391.60 1418.70 1350.50 528 2500 2460.60 2447.20 2439.80 
484 1500 1480.00 1488.60 1479.30 529 1400 1381.30 1371.30 1352.50 
485 1400 1359.90 1418.80 1384.90 530 1400 1332.10 1392.90 1394.80 
486 1400 1409.90 1401.00 1386.70 531 2500 2520.60 2505.80 2488.20 
487 1400 1421.80 1406.30 1397.10 532 1400 1422.90 1427.90 1419.90 
488 400 408.91 413.08 411.00 533 400 394.65 401.49 398.87 
489 1400 1363.00 1417.30 1403.70 534 2500 2460.20 2449.20 2446.20 
490 1400 1356.70 1413.50 1385.10 535 400 396.91 405.37 403.35 
491 2500 2505.20 2484.00 2468.40 536 1400 1382.60 1372.80 1364.60 
492 1400 1364.70 1428.70 1406.20 537 1400 1404.90 1396.20 1396.00 
493 1400 1376.60 1430.50 1399.90 538 400 396.03 410.50 408.31 
494 400 396.44 402.76 405.40 539 1500 1491.60 1482.00 1477.80 
495 400 396.88 401.58 404.20 540 2500 2461.30 2450.40 2445.70 
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541 1400 1357.80 1401.30 1390.70 586 1400 1345.00 1398.00 1377.50 
542 400 390.50 395.89 395.80 587 2500 2559.50 2539.60 2533.60 
543 1400 1341.40 1399.60 1411.00 588 1400 1342.70 1398.10 1380.50 
544 2500 2532.40 2503.90 2485.60 589 1400 1352.90 1414.40 1406.60 
545 1400 1333.80 1390.70 1371.50 590 400 404.31 401.88 396.86 
546 1400 1346.10 1402.50 1400.20 591 400 399.95 406.15 410.84 
547 1400 1344.60 1392.10 1368.00 592 1400 1356.10 1398.60 1373.40 
548 1400 1349.30 1386.80 1374.30 593 400 393.53 395.67 399.35 
549 1400 1339.30 1388.90 1370.10 594 1400 1370.80 1411.20 1403.00 
550 2500 2467.60 2422.00 2409.70 595 1400 1347.80 1398.30 1374.70 
551 1400 1352.40 1403.50 1404.30 596 400 395.60 405.85 411.20 
552 1400 1351.60 1354.40 1392.30 597 1400 1391.40 1386.90 1380.90 
553 1400 1331.90 1392.80 1359.50 598 400 407.34 401.91 403.42 
554 1500 1494.30 1484.70 1483.40 599 1400 1343.80 1396.00 1372.50 
555 1500 1485.70 1489.30 1497.70 600 400 402.84 409.91 411.00 
556 1400 1350.50 1414.20 1395.20 601 400 399.06 400.01 401.72 
557 1400 1351.80 1397.00 1359.30 602 1400 1338.50 1415.40 1373.50 
558 2500 2468.40 2465.00 2446.50 603 400 397.49 402.61 400.96 
559 1500 1500.90 1491.40 1482.40 604 1400 1350.60 1392.90 1376.60 
560 400 402.22 404.77 393.57 605 1400 1336.00 1389.60 1374.50 
561 2500 2449.40 2425.90 2409.80 606 1500 1504.80 1519.70 1497.10 
562 1500 1527.40 1534.20 1526.60 607 1400 1355.30 1406.00 1391.30 
563 1400 1342.40 1391.60 1361.10 608 2500 2542.40 2533.40 2515.90 
564 1400 1342.60 1408.60 1394.10 609 1500 1485.50 1484.80 1469.90 
565 1400 1353.50 1399.90 1384.10 610 1400 1355.20 1385.20 1379.50 
566 1400 1343.30 1389.00 1356.70 611 1400 1355.00 1385.70 1375.80 
567 1400 1397.20 1395.20 1387.90 612 1400 1357.00 1382.60 1368.90 
568 2500 2462.30 2428.80 2407.80 613 2500 2542.30 2484.00 2464.70 
569 1400 1350.70 1404.60 1385.90 614 1400 1352.40 1377.40 1353.80 
570 400 391.72 398.02 394.35 615 400 396.15 399.01 400.95 
571 400 389.73 395.70 401.23 616 400 390.28 386.80 386.60 
572 1400 1330.10 1378.70 1356.60 617 1400 1349.20 1380.20 1379.20 
573 400 396.10 404.11 407.63 618 1400 1347.50 1375.30 1358.90 
574 1400 1341.30 1385.60 1362.50 619 1400 1345.50 1372.50 1354.20 
575 400 397.44 403.45 406.43 620 400 398.33 389.98 392.19 
576 1400 1338.00 1396.50 1373.80 621 1400 1353.90 1386.10 1372.60 
577 2500 2545.60 2496.10 2469.80 622 1400 1350.40 1380.40 1354.80 
578 400 397.75 400.43 403.33 623 2500 2545.10 2494.30 2468.20 
579 1400 1363.50 1413.90 1400.90 624 1400 1351.20 1387.10 1368.70 
580 2500 2558.40 2515.30 2502.10 625 1400 1353.90 1376.20 1353.00 
581 400 400.69 402.09 405.74 626 400 397.15 399.88 402.36 
582 1400 1365.10 1410.50 1398.50 627 400 397.23 397.14 396.24 
583 1400 1361.70 1403.60 1377.60 628 1400 1352.50 1380.10 1371.90 
584 2500 2563.00 2537.30 2527.80 629 1400 1350.20 1383.70 1363.30 
585 1400 1367.80 1412.70 1398.30 630 400 394.11 389.10 392.22 
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631 400 398.52 396.15 396.90 676 1400 1349.30 1379.90 1383.00 
632 1400 1360.10 1385.20 1373.30 677 1400 1349.10 1375.40 1379.10 
633 400 399.47 407.33 402.70 678 400 388.83 390.61 397.03 
634 1400 1354.60 1387.40 1364.80 679 400 389.27 388.89 396.60 
635 1400 1358.80 1382.20 1346.10 680 400 397.99 396.59 402.77 
636 1400 1359.00 1387.50 1368.50 681 400 394.91 394.93 403.49 
637 1400 1353.30 1382.70 1361.00 682 400 398.94 398.56 406.27 
638 2500 2542.50 2491.30 2467.40 683 400 397.21 405.45 404.64 
639 1400 1339.70 1384.40 1360.50 684 2500 2417.90 2425.50 2484.20 
640 1400 1341.90 1385.00 1357.40 685 1400 1355.10 1418.70 1386.50 
641 400 391.80 399.06 393.82 686 400 387.51 395.79 396.01 
642 2500 2538.20 2508.70 2488.20 687 400 403.60 409.24 408.59 
643 400 399.65 401.32 399.63 688 400 399.37 406.30 403.89 
644 1400 1355.00 1381.10 1357.60 689 1400 1364.00 1405.20 1364.40 
645 2500 2547.10 2507.90 2484.60 690 400 392.51 393.82 392.50 
646 400 404.65 403.40 399.78 691 400 391.96 393.78 396.80 
647 1400 1346.90 1387.00 1356.40 692 1400 1388.30 1415.70 1379.80 
648 2500 2538.30 2485.40 2461.70 693 2500 2482.10 2515.30 2467.50 
649 1400 1358.40 1387.30 1401.20 694 1400 1372.00 1413.80 1389.40 
650 2500 2545.60 2515.80 2491.00 695 2500 2462.40 2506.60 2488.40 
651 1400 1352.40 1385.50 1366.60 696 1400 1383.30 1401.00 1380.60 
652 1400 1352.90 1391.70 1385.10 697 1500 1484.50 1508.80 1528.30 
653 400 392.26 392.84 394.90 698 2500 2478.10 2516.30 2463.30 
654 1400 1385.80 1365.40 1368.40 699 1500 1488.10 1505.40 1520.80 
655 400 392.84 400.46 393.80 700 2500 2484.10 2498.50 2442.60 
656 1400 1385.80 1395.40 1367.00 701 1500 1492.90 1512.10 1529.10 
657 1400 1346.50 1372.10 1345.30 702 400 390.42 385.72 385.95 
658 2500 2500.30 2486.60 2474.90 703 400 390.34 388.14 387.75 
659 1500 1516.90 1488.00 1475.30 704 1500 1481.70 1500.50 1509.20 
660 2500 2502.40 2474.80 2465.00 705 1400 1386.90 1410.10 1378.60 
661 1400 1355.30 1378.40 1362.20 706 400 390.24 390.14 386.20 
662 1400 1351.50 1376.30 1351.40 707 1400 1392.80 1415.10 1369.50 
663 1400 1359.00 1371.00 1366.00 708 1400 1385.90 1418.70 1389.50 
664 1400 1383.00 1407.00 1392.00 709 400 390.47 389.78 388.31 
665 2500 2521.70 2509.50 2489.70 710 1400 1388.20 1408.10 1375.30 
666 400 393.41 388.70 385.44 711 1400 1391.00 1407.10 1386.30 
667 1400 1355.50 1388.20 1355.02 712 1400 1383.60 1410.20 1386.10 
668 1400 1357.80 1372.70 1342.90 713 2500 2478.70 2499.00 2439.50 
669 1400 1342.70 1383.30 1389.10 714 400 396.48 396.99 396.55 
670 1400 1388.00 1391.30 1343.10 715 400 399.98 401.29 398.85 
671 1400 1340.20 1371.60 1363.20 716 2500 2470.70 2497.50 2436.30 
672 2500 2499.00 2485.70 2502.00 717 400 401.09 403.15 398.07 
673 1400 1346.30 1374.50 1360.80 718 400 406.21 408.18 400.86 
674 1400 1350.60 1379.10 1381.90 719 1500 1472.10 1496.60 1478.70 
675 1400 1386.30 1364.60 1369.30 720 1400 1413.90 1425.80 1408.50 
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721 400 411.62 407.14 405.05 766 1400 1383.60 1387.10 1381.30 
722 2500 2516.90 2537.60 2516.90 767 400 399.41 393.86 397.57 
723 400 402.29 402.52 399.17 768 1400 1369.70 1381.70 1397.80 
724 2500 2463.00 2486.90 2457.10 769 400 397.81 393.99 402.61 
725 400 401.98 396.11 394.68 770 2500 2471.70 2479.30 2497.50 
726 400 397.88 393.72 396.96 771 1400 1387.50 1384.10 1388.20 
727 2500 2494.50 2487.60 2439.20 772 1400 1369.10 1371.60 1393.30 
728 2500 2492.70 2486.90 2433.10 773 2500 2476.20 2478.50 2494.40 
729 400 403.36 401.40 399.20 774 1400 1374.90 1385.00 1393.20 
730 1400 1394.50 1406.00 1385.10 775 400 399.03 394.84 401.74 
731 2500 2458.00 2479.00 2479.10 776 1400 1383.50 1393.30 1391.50 
732 1400 1389.30 1392.90 1364.00 777 1400 1369.10 1386.80 1404.40 
733 400 396.27 394.44 392.29 778 2500 2480.40 2487.90 2494.10 
734 400 402.64 398.18 396.29 779 400 398.52 393.04 400.06 
735 2500 2454.00 2479.00 2455.00 780 1400 1389.10 1399.30 1398.60 
736 400 399.14 390.77 387.15 781 400 400.27 393.90 401.51 
737 400 399.08 395.02 390.15 782 1400 1394.40 1397.90 1397.70 
738 1400 1388.10 1396.80 1355.80 783 400 400.25 394.64 404.21 
739 1400 1384.10 1391.00 1353.10 784 1400 1401.30 1365.90 1378.70 
740 400 398.03 393.42 392.74 785 400 400.14 396.27 406.79 
741 1400 1384.20 1401.80 1374.90 786 2500 2488.90 2479.30 2487.10 
742 2500 2463.80 2462.30 2441.30 787 400 400.14 390.84 399.51 
743 400 397.23 393.94 392.70 788 400 399.23 392.92 406.76 
744 1400 1379.60 1399.00 1396.00 789 2500 2478.90 2480.90 2508.50 
745 400 397.70 397.92 395.07 790 2500 2469.00 2480.60 2503.90 
746 1400 1385.90 1403.00 1391.80 791 1400 1380.90 1394.60 1410.10 
747 1400 1379.90 1385.60 1360.50 792 2500 2492.00 2485.90 2485.50 
748 1400 1386.80 1403.90 1391.70 793 1400 1371.20 1382.60 1391.90 
749 1400 1373.90 1384.90 1351.30 794 2500 2476.40 2487.00 2512.50 
750 400 398.27 400.68 397.83 795 400 406.53 408.46 413.17 
751 1400 1387.20 1411.60 1421.70 796 2500 2497.90 2542.30 2531.90 
752 400 398.79 395.59 403.79 797 400 404.26 412.08 412.09 
753 2500 2484.80 2496.00 2471.60 798 400 404.53 405.71 404.44 
754 400 399.49 399.67 392.62 799 2500 2479.30 2523.20 2496.10 
755 1400 1369.10 1394.20 1383.60 800 400 408.81 409.37 402.39 
756 1400 1378.90 1401.90 1395.10 801 400 409.46 414.69 412.06 
757 400 398.92 398.17 397.09 802 400 406.05 411.68 410.31 
758 2500 2463.20 2462.60 2418.40 803 400 406.58 414.92 414.78 
759 400 400.36 400.52 398.38 804 2500 2500.90 2563.40 2523.10 
760 1400 1379.20 1386.50 1360.00 805 400 404.40 407.07 408.72 
761 400 402.84 402.54 400.60 806 1400 1396.40 1431.00 1403.70 
762 2500 2476.40 2463.80 2434.30 807 1400 1386.60 1428.10 1413.30 
763 400 398.54 394.46 396.45 808 400 404.97 408.60 410.57 
764 400 402.86 397.49 399.12 809 1400 1391.60 1422.80 1413.90 
765 1400 1387.30 1385.80 1370.10 810 400 404.07 403.42 405.80 
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811 400 403.60 405.29 410.19 856 1400 1384.90 1387.40 1376.00 
812 1400 1398.50 1440.20 1423.60 857 1400 1380.40 1377.80 1366.40 

813 400 405.57 404.79 407.70 858 2500 2528.50 2420.40 2409.20 
814 400 402.33 401.88 404.25 859 1400 1388.50 1389.00 1366.40 
815 2500 2522.90 2560.70 2513.50 860 1400 1391.40 1379.70 1374.60 
816 400 401.33 399.58 404.21 861 1400 1428.00 1376.10 1369.50 
817 400 404.73 409.82 412.40 862 2500 2532.20 2436.20 2429.70 

818 400 405.86 410.52 414.88 863 400 392.80 403.69 406.21 

819 2500 2524.70 2480.50 2469.20 864 400 393.91 404.88 407.26 

820 400 402.91 404.43 409.29 865 1400 1383.10 1381.70 1390.70 

821 1400 1395.70 1432.80 1412.40 866 1400 1397.80 1403.00 1420.70 

822 1400 1389.00 1427.30 1425.50 867 2500 2531.20 2521.20 2551.00 

823 2500 2516.10 2482.20 2480.70 868 2500 2525.40 2513.20 2549.30 

824 400 405.20 412.17 414.91 869 400 412.53 404.81 397.39 

825 400 401.00 408.42 411.65 870 2500 2555.50 2515.60 2532.90 

826 400 396.54 399.79 406.65 871 1400 1416.40 1395.80 1448.70 

827 2500 2487.20 2413.50 2471.50 872 2500 2554.60 2527.30 2541.70 

828 1400 1396.00 1396.70 1426.90 873 2500 2494.60 2519.40 2560.20 

829 1400 1399.80 1396.00 1402.20 874 1400 1371.10 1395.50 1412.10 

830 2500 2535.90 2518.80 2520.30 875 1400 1432.50 1403.40 1424.40 

831 1400 1391.50 1387.80 1383.70 876 2500 2477.40 2493.10 2506.10 
832 1400 1387.30 1384.40 1363.00 877 1400 1380.40 1395.90 1389.80 
833 400 401.60 394.68 400.77 878 2500 2429.60 2423.30 2497.90 
834 2500 2525.60 2503.90 2477.10 879 1400 1390.40 1400.80 1435.70 
835 1400 1384.80 1393.30 1387.20 880 1400 1376.80 1396.70 1372.90 

836 1400 1388.40 1390.50 1388.20 881 1400 1390.80 1397.50 1378.40 

837 2500 2522.10 2472.60 2443.00 882 400 390.51 389.35 393.56 

838 1400 1388.10 1389.40 1387.60 883 1400 1373.90 1384.60 1365.00 

839 1400 1399.90 1389.10 1370.70 884 1400 1375.40 1388.90 1375.90 

840 1400 1387.00 1390.00 1382.30 885 2500 2496.90 2422.30 2409.10 

841 2500 2491.20 2467.20 2437.50 886 1400 1367.70 1384.00 1367.30 

842 1400 1386.60 1380.50 1373.80 887 1400 1377.70 1390.60 1367.20 

843 1400 1389.90 1387.00 1371.20 888 1400 1372.40 1393.00 1374.30 

844 1400 1389.00 1384.90 1377.90 889 1400 1439.50 1386.80 1371.60 

845 2500 2537.30 2429.60 2422.10 890 1400 1370.10 1379.30 1362.90 

846 1400 1381.40 1387.60 1385.00 891 1400 1369.80 1382.40 1366.60 

847 2500 2520.10 2504.40 2489.40 892 2500 2475.30 2499.80 2460.70 

848 400 381.19 381.46 390.36 893 1400 1430.00 1387.70 1373.90 

849 1400 1385.20 1382.70 1373.20 894 1400 1359.90 1383.50 1358.80 

850 1400 1382.30 1387.70 1381.90 

851 1400 1391.00 1392.50 1382.20 

852 2500 2510.10 2487.20 2476.70 

853 1400 1391.00 1392.50 1382.20 

854 2500 2497.00 2482.80 2464.80 

855 400 386.09 400.90 398.01 



CHAPTER 6 

SUMMARY AND CONCLUSIONS 

Contributions 

This research makes contributions to Multivariate Statistical Process Monitoring 

in several areas. In Chapter 3: 

a) Hawkins' regression adjustment procedure (1993) was generalized to 
allow its appropriate use for a wider class of cascade processes involving 
several and varying numbers of measurements at each process step. This 
procedure involves grouping of the variables according to process step, 
and performing the regression adjustment across steps. 

b) A proof was provided that shows least-squares estimates of the 
regression coefficients meets conditions for independence between groups 
being monitored. This enables each chart to be designed so that an overall 
false alarm rate is maintained. 

c) An example demonstrated conditions when the signalling performance 
of the proposed procedure outperformed traditional monitoring methods 
and when it did not. 

d) The example also demonstrated that for the assumed process model, 
the proposed method retains diagnostic advantages over T2 decomposition 
methods. Diagnostic advantageous over Principal Components Analysis 
were also demonstrated for cases where principle components contained 
large factor loadings for variables that spanned more than one group. 

In Chapter 4: 

a) The novel application (to industrial process data from a local 
semiconductor manufacturer) of Generalized Linear Models theory to 
regression adjustment monitoring to deal explicitly with non-normality 
and non-constant variance in the data was presented. Prediction limits 
were shown to be tighter than for transformation-based least-squares 
methods. Though the difference shown in the example was small, it is 
thought to be a conservative example since departures from normality and 
constant variance assumptions were small, and models were fit over small 
range of controlled data. It is hoped that publication of this idea will 
generate additional interest leading to the analysis of more complex data 
sets. 
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b) The example highlighted the appropriateness of prediction interval 
lengths that vary with the non-constant variance in the original data. 
Prediction intervals that are inappropriately too tight in regions that 
naturally exhibit more variability would lead to false alarms. This idea has 
not been encountered in the literature review as most methods assume 
normality or make appeals to the Central Limit Theorem. Both 
transformation-based least-squares and generalized linear models 
approaches possessed this property. 

c) The example demonstrated the flexibility of regression adjustment 
methods to consider non-linear relationships between quality measurement 
variables, in contrast to linear-only relationship information in methods 
that rely primarily on the covariance matrix. 

In Chapter 5: 

a) The adaptation of regression adjustment for monitoring zone- 
uniformity when product specifications may change between runs was 
explored. The method involves adding covariates for product specification 
to the usual regression adjustment between variables. For the three-zone 
industrial process considered, loss of uniformity in a single-zone, or in two 
zones were shown to provide strong signals in the residuals being 
monitored. A simultaneous shift in all three zones would not be detected, 
so a T2 (or other directionally invariant method) running "in parallel" with 
this approach is recommended. 

b) Residuals from the models formed with product specification 
covariates were shown to provide strong indications of uniformity 
dispersion effects across product specification levels. In particular, more 
variability in uniformity was observed with one product specification that 
was inconsistent with the trend over the other levels — an indication to 
process engineers that further investigation may be necessary. 
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Opportunities for Additional Inquiry 

The outcome of any serious research can only be to make two questions 
grow where only one grew before. 

--Thorstein Bunde Veblen (1857-1929) 

Multivariate Statistical Process Monitoring of Non-Normally Distributed 
Quality Characteristics by Monitoring Generalized Variance 

It is important to control process variability as well as the mean. When quality 

characteristics are normally distributed, their means are independent of their variances, 

and separate monitoring methods are required for each. When the quality characteristics 

are not normally distributed, their variances are a function of their means. It is reasonable 

to infer that when non-normally distributed variables are being monitored, an assignable 

cause would induce changes in both the mean and variance, simultaneously. 

Furthermore, the covariance between these variables is likely to change in such a scenario 

— in other words, the likelihood that the mean and variances of several non-normal 

variables shift in such a manner that the same covariance structure is maintained is highly 

unlikely. Since both the variances and covariances are changing, measures that include 

both could likely be the fastest indication of problem in the process being monitored. 

In the multivariate normal case, the sample generalized variance, |S|, which is the 

determinant of the covariance matrix, is often used to monitor process variability. 

Montgomery (1991) suggests a control chart based on E(|S|) ±3JV(|S|) , where 

E(|S|) = bi|z|, (6-1) 
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V(|S|) = b2|5:|2, (6-2) 

b, = r[(n-i),and (6-3) 
'     (n-l)pif 

(n-l)Hf 
n(n-j + 2)-f](n-j) (6-4) 

Over a set of historically "clean" process data, one may also calculate the sample 

generalized variance, consider these values as "targets," then use procedures involving 

repeated hypothesis testing that the covariance matrix is equal to that containing the target 

constants. Details on these procedures are available in Alt (1985) and Morrison (1990). 

Reference distributions for control statistics in these methods are based on 

assumptions that the sample generalized variance is obtained from random samples of 

p-dimensional multinormal populations. With count, proportion, or otherwise skewed 

data, this assumption is violated, and robustness to departures have not been studied. 

Also, under varied quality characteristic distributions, reference distributions for existing 

test statistics based on the sample generalized variance would be complex (and perhaps 

impossible to determine), and are likely to be scenario specific. A robustness study and 

adapted techniques based on empirical reference distributions [similar to Willemain and 

Runger, 1996] would be interesting and valuable. 

Finally, another reason a generalized variance approach may be desireable is when 

process shift structures are unknown or likely to be in any direction. The method for 
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dealing with non-normality in Chapter 4 relies on regression adjustment which, in turn, is 

successful only when usual relationships between variables are violated. 

Finite Intersection Test (FIT) for 
Grouped Regression Adjustment Procedure 

Timm(1996) proposed a Finite Intersection Tests (FIT) over the same set of 

regression adjusted variables proposed by Hawkins (1991, 1993). Timm stated this test 

was optimal when an a priori order is available (which is the case for cascade processes). 

As Chapter 3 generalized Hawkins' (1993) procedure, it's reasonable to believe that 

TIMM's FIT procedure is also generalizable to the case of varying numbers of variables at 

each process step. The work would most likely encompass adapting the test-statistic 

shown in (2-29) and determining the correct reference distribution. 

Autocorrelation in Regression Adjustment 

When measuring the autocorrelation present in Chapter 4, it was noticed that the 

first-order autocorrelation in the original variables was 0.49, while it was 0.44 in the 

residuals. Some reduction due to the regression adjustment appears to have taken place, 

even though only a single regressor was involved. Montgomery and Peck (1992) have 

noted that autocorrelation in residuals is sometimes an artifact of variable selection. It 

would be interesting to determine if the amount of residual autocorrelation observed in 

the quality measurement variables is reduced in the residuals when the number of process 

steps considered is increased. 
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Robust Fitting Techniques as a Means of 
Phase I Retrospective Testing 

Initializing statistical process monitoring methods often require use of historical 

process data to estimate chart parameters. Lack of control in the historical data could 

cause parameter estimates that result in charts that are insensitive to lack of control in 

continued monitoring. Montgomery (1991) includes a method for the T that breaks 

historical data into subgroups for estimating sample means and variance in order to 

reduce the influence of outliers in the historical data. 

In regression, influence of outliers is often reduced by applying a smaller weight 

to extreme observations, according to some weight function. It would be interesting to 

investigate Phase I methods that use Robust regression techniques for fitting relationships 

between the data, then use the weights as a means of identifying "out-of-control" points in 

the historical data. Estimates of process parameters could then be generated while 

omitting, or down-weighting these troublesome points. 

Independence Between Groups of Residuals in GLM Theory 

When using several charts of regression adjusted variables, it is desirable that the 

residuals in each group are independent of each other, so that each chart may be designed 

so that an overall false alarm rate may be maintained. This property is present across 

steps for cascade processes, but is not present when variables at one process step are 

regressed agains others in the same process step (Hawkins, 1991). 

The proof in Chapter 3 demonstrated the presence of this property across groups 

when least-squares estimates were used. Montgomery and Myers (1997) found some 
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unexpected results with the use of Generalized Linear Models theory, namely that even 

though orthogonally designed data was being analyzed, parameter estimates were no 

longer orthogonal due to the variance functions driving the weights assigned to individual 

observations during in parameter estimation. It is important to determine if similar 

impacts on independence between groups of residuals occurs in the Chapter 4 scenario. If 

the independence property were lost, then observed ARL performance would be different 

than what was designed. 

Conclusion 

While several ideas have been presented, they are by no means exhaustive. The 

earlier discussion of different process structures, shift structures, variable relationships, 

autocorrelation, data from non-normal distributions with non-constant variance, numbers 

of variables, etc. create a myriad of opportunities for tailoring procedures to a specific 

need. The literature review also suggests this field is picking up a "new head of steam." 
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